summaryrefslogtreecommitdiff
path: root/shape.c
diff options
context:
space:
mode:
Diffstat (limited to 'shape.c')
-rw-r--r--shape.c1327
1 files changed, 1327 insertions, 0 deletions
diff --git a/shape.c b/shape.c
new file mode 100644
index 0000000000..952d647c60
--- /dev/null
+++ b/shape.c
@@ -0,0 +1,1327 @@
+#include "vm_core.h"
+#include "vm_sync.h"
+#include "shape.h"
+#include "symbol.h"
+#include "id_table.h"
+#include "internal/class.h"
+#include "internal/error.h"
+#include "internal/gc.h"
+#include "internal/object.h"
+#include "internal/symbol.h"
+#include "internal/variable.h"
+#include "variable.h"
+#include <stdbool.h>
+
+#ifndef _WIN32
+#include <sys/mman.h>
+#endif
+
+#ifndef SHAPE_DEBUG
+#define SHAPE_DEBUG (VM_CHECK_MODE > 0)
+#endif
+
+#if SIZEOF_SHAPE_T == 4
+#if RUBY_DEBUG
+#define SHAPE_BUFFER_SIZE 0x8000
+#else
+#define SHAPE_BUFFER_SIZE 0x80000
+#endif
+#else
+#define SHAPE_BUFFER_SIZE 0x8000
+#endif
+
+#define REDBLACK_CACHE_SIZE (SHAPE_BUFFER_SIZE * 32)
+
+#define SINGLE_CHILD_TAG 0x1
+#define TAG_SINGLE_CHILD(x) (struct rb_id_table *)((uintptr_t)x | SINGLE_CHILD_TAG)
+#define SINGLE_CHILD_MASK (~((uintptr_t)SINGLE_CHILD_TAG))
+#define SINGLE_CHILD_P(x) (((uintptr_t)x) & SINGLE_CHILD_TAG)
+#define SINGLE_CHILD(x) (rb_shape_t *)((uintptr_t)x & SINGLE_CHILD_MASK)
+#define ANCESTOR_CACHE_THRESHOLD 10
+#define MAX_SHAPE_ID (SHAPE_BUFFER_SIZE - 1)
+#define ANCESTOR_SEARCH_MAX_DEPTH 2
+
+static ID id_frozen;
+static ID id_t_object;
+
+#define LEAF 0
+#define BLACK 0x0
+#define RED 0x1
+
+static redblack_node_t *
+redblack_left(redblack_node_t * node)
+{
+ if (node->l == LEAF) {
+ return LEAF;
+ }
+ else {
+ RUBY_ASSERT(node->l < GET_SHAPE_TREE()->cache_size);
+ redblack_node_t * left = &GET_SHAPE_TREE()->shape_cache[node->l - 1];
+ return left;
+ }
+}
+
+static redblack_node_t *
+redblack_right(redblack_node_t * node)
+{
+ if (node->r == LEAF) {
+ return LEAF;
+ }
+ else {
+ RUBY_ASSERT(node->r < GET_SHAPE_TREE()->cache_size);
+ redblack_node_t * right = &GET_SHAPE_TREE()->shape_cache[node->r - 1];
+ return right;
+ }
+}
+
+static redblack_node_t *
+redblack_find(redblack_node_t * tree, ID key)
+{
+ if (tree == LEAF) {
+ return LEAF;
+ }
+ else {
+ RUBY_ASSERT(redblack_left(tree) == LEAF || redblack_left(tree)->key < tree->key);
+ RUBY_ASSERT(redblack_right(tree) == LEAF || redblack_right(tree)->key > tree->key);
+
+ if (tree->key == key) {
+ return tree;
+ }
+ else {
+ if (key < tree->key) {
+ return redblack_find(redblack_left(tree), key);
+ }
+ else {
+ return redblack_find(redblack_right(tree), key);
+ }
+ }
+ }
+}
+
+static inline char
+redblack_color(redblack_node_t * node)
+{
+ return node && ((uintptr_t)node->value & RED);
+}
+
+static inline bool
+redblack_red_p(redblack_node_t * node)
+{
+ return redblack_color(node) == RED;
+}
+
+static inline rb_shape_t *
+redblack_value(redblack_node_t * node)
+{
+ // Color is stored in the bottom bit of the shape pointer
+ // Mask away the bit so we get the actual pointer back
+ return (rb_shape_t *)((uintptr_t)node->value & (((uintptr_t)-1) - 1));
+}
+
+static redblack_id_t
+redblack_id_for(redblack_node_t * node)
+{
+ RUBY_ASSERT(node || node == LEAF);
+ if (node == LEAF) {
+ return 0;
+ }
+ else {
+ redblack_node_t * redblack_nodes = GET_SHAPE_TREE()->shape_cache;
+ redblack_id_t id = (redblack_id_t)(node - redblack_nodes);
+ return id + 1;
+ }
+}
+
+static redblack_node_t *
+redblack_new(char color, ID key, rb_shape_t * value, redblack_node_t * left, redblack_node_t * right)
+{
+ if (GET_SHAPE_TREE()->cache_size + 1 >= REDBLACK_CACHE_SIZE) {
+ // We're out of cache, just quit
+ return LEAF;
+ }
+
+ RUBY_ASSERT(left == LEAF || left->key < key);
+ RUBY_ASSERT(right == LEAF || right->key > key);
+
+ redblack_node_t * redblack_nodes = GET_SHAPE_TREE()->shape_cache;
+ redblack_node_t * node = &redblack_nodes[(GET_SHAPE_TREE()->cache_size)++];
+ node->key = key;
+ node->value = (rb_shape_t *)((uintptr_t)value | color);
+ node->l = redblack_id_for(left);
+ node->r = redblack_id_for(right);
+ return node;
+}
+
+static redblack_node_t *
+redblack_balance(char color, ID key, rb_shape_t * value, redblack_node_t * left, redblack_node_t * right)
+{
+ if (color == BLACK) {
+ ID new_key, new_left_key, new_right_key;
+ rb_shape_t *new_value, *new_left_value, *new_right_value;
+ redblack_node_t *new_left_left, *new_left_right, *new_right_left, *new_right_right;
+
+ if (redblack_red_p(left) && redblack_red_p(redblack_left(left))) {
+ new_right_key = key;
+ new_right_value = value;
+ new_right_right = right;
+
+ new_key = left->key;
+ new_value = redblack_value(left);
+ new_right_left = redblack_right(left);
+
+ new_left_key = redblack_left(left)->key;
+ new_left_value = redblack_value(redblack_left(left));
+
+ new_left_left = redblack_left(redblack_left(left));
+ new_left_right = redblack_right(redblack_left(left));
+ }
+ else if (redblack_red_p(left) && redblack_red_p(redblack_right(left))) {
+ new_right_key = key;
+ new_right_value = value;
+ new_right_right = right;
+
+ new_left_key = left->key;
+ new_left_value = redblack_value(left);
+ new_left_left = redblack_left(left);
+
+ new_key = redblack_right(left)->key;
+ new_value = redblack_value(redblack_right(left));
+ new_left_right = redblack_left(redblack_right(left));
+ new_right_left = redblack_right(redblack_right(left));
+ }
+ else if (redblack_red_p(right) && redblack_red_p(redblack_left(right))) {
+ new_left_key = key;
+ new_left_value = value;
+ new_left_left = left;
+
+ new_right_key = right->key;
+ new_right_value = redblack_value(right);
+ new_right_right = redblack_right(right);
+
+ new_key = redblack_left(right)->key;
+ new_value = redblack_value(redblack_left(right));
+ new_left_right = redblack_left(redblack_left(right));
+ new_right_left = redblack_right(redblack_left(right));
+ }
+ else if (redblack_red_p(right) && redblack_red_p(redblack_right(right))) {
+ new_left_key = key;
+ new_left_value = value;
+ new_left_left = left;
+
+ new_key = right->key;
+ new_value = redblack_value(right);
+ new_left_right = redblack_left(right);
+
+ new_right_key = redblack_right(right)->key;
+ new_right_value = redblack_value(redblack_right(right));
+ new_right_left = redblack_left(redblack_right(right));
+ new_right_right = redblack_right(redblack_right(right));
+ }
+ else {
+ return redblack_new(color, key, value, left, right);
+ }
+
+ RUBY_ASSERT(new_left_key < new_key);
+ RUBY_ASSERT(new_right_key > new_key);
+ RUBY_ASSERT(new_left_left == LEAF || new_left_left->key < new_left_key);
+ RUBY_ASSERT(new_left_right == LEAF || new_left_right->key > new_left_key);
+ RUBY_ASSERT(new_left_right == LEAF || new_left_right->key < new_key);
+ RUBY_ASSERT(new_right_left == LEAF || new_right_left->key < new_right_key);
+ RUBY_ASSERT(new_right_left == LEAF || new_right_left->key > new_key);
+ RUBY_ASSERT(new_right_right == LEAF || new_right_right->key > new_right_key);
+
+ return redblack_new(
+ RED, new_key, new_value,
+ redblack_new(BLACK, new_left_key, new_left_value, new_left_left, new_left_right),
+ redblack_new(BLACK, new_right_key, new_right_value, new_right_left, new_right_right));
+ }
+
+ return redblack_new(color, key, value, left, right);
+}
+
+static redblack_node_t *
+redblack_insert_aux(redblack_node_t * tree, ID key, rb_shape_t * value)
+{
+ if (tree == LEAF) {
+ return redblack_new(RED, key, value, LEAF, LEAF);
+ }
+ else {
+ redblack_node_t *left, *right;
+ if (key < tree->key) {
+ left = redblack_insert_aux(redblack_left(tree), key, value);
+ RUBY_ASSERT(left != LEAF);
+ right = redblack_right(tree);
+ RUBY_ASSERT(right == LEAF || right->key > tree->key);
+ }
+ else if (key > tree->key) {
+ left = redblack_left(tree);
+ RUBY_ASSERT(left == LEAF || left->key < tree->key);
+ right = redblack_insert_aux(redblack_right(tree), key, value);
+ RUBY_ASSERT(right != LEAF);
+ }
+ else {
+ return tree;
+ }
+
+ return redblack_balance(
+ redblack_color(tree),
+ tree->key,
+ redblack_value(tree),
+ left,
+ right
+ );
+ }
+}
+
+static redblack_node_t *
+redblack_force_black(redblack_node_t * node)
+{
+ node->value = redblack_value(node);
+ return node;
+}
+
+static redblack_node_t *
+redblack_insert(redblack_node_t * tree, ID key, rb_shape_t * value)
+{
+ redblack_node_t * root = redblack_insert_aux(tree, key, value);
+
+ if (redblack_red_p(root)) {
+ return redblack_force_black(root);
+ }
+ else {
+ return root;
+ }
+}
+
+rb_shape_tree_t *rb_shape_tree_ptr = NULL;
+
+/*
+ * Shape getters
+ */
+rb_shape_t *
+rb_shape_get_root_shape(void)
+{
+ return GET_SHAPE_TREE()->root_shape;
+}
+
+shape_id_t
+rb_shape_id(rb_shape_t * shape)
+{
+ return (shape_id_t)(shape - GET_SHAPE_TREE()->shape_list);
+}
+
+void
+rb_shape_each_shape(each_shape_callback callback, void *data)
+{
+ rb_shape_t *cursor = rb_shape_get_root_shape();
+ rb_shape_t *end = rb_shape_get_shape_by_id(GET_SHAPE_TREE()->next_shape_id);
+ while (cursor < end) {
+ callback(cursor, data);
+ cursor += 1;
+ }
+}
+
+RUBY_FUNC_EXPORTED rb_shape_t *
+rb_shape_get_shape_by_id(shape_id_t shape_id)
+{
+ RUBY_ASSERT(shape_id != INVALID_SHAPE_ID);
+
+ rb_shape_t *shape = &GET_SHAPE_TREE()->shape_list[shape_id];
+ return shape;
+}
+
+rb_shape_t *
+rb_shape_get_parent(rb_shape_t * shape)
+{
+ return rb_shape_get_shape_by_id(shape->parent_id);
+}
+
+#if !SHAPE_IN_BASIC_FLAGS
+shape_id_t rb_generic_shape_id(VALUE obj);
+#endif
+
+RUBY_FUNC_EXPORTED shape_id_t
+rb_shape_get_shape_id(VALUE obj)
+{
+ if (RB_SPECIAL_CONST_P(obj)) {
+ return SPECIAL_CONST_SHAPE_ID;
+ }
+
+#if SHAPE_IN_BASIC_FLAGS
+ return RBASIC_SHAPE_ID(obj);
+#else
+ switch (BUILTIN_TYPE(obj)) {
+ case T_OBJECT:
+ return ROBJECT_SHAPE_ID(obj);
+ break;
+ case T_CLASS:
+ case T_MODULE:
+ return RCLASS_SHAPE_ID(obj);
+ default:
+ return rb_generic_shape_id(obj);
+ }
+#endif
+}
+
+size_t
+rb_shape_depth(rb_shape_t * shape)
+{
+ size_t depth = 1;
+
+ while (shape->parent_id != INVALID_SHAPE_ID) {
+ depth++;
+ shape = rb_shape_get_parent(shape);
+ }
+
+ return depth;
+}
+
+rb_shape_t*
+rb_shape_get_shape(VALUE obj)
+{
+ return rb_shape_get_shape_by_id(rb_shape_get_shape_id(obj));
+}
+
+static rb_shape_t *
+shape_alloc(void)
+{
+ shape_id_t shape_id = GET_SHAPE_TREE()->next_shape_id;
+ GET_SHAPE_TREE()->next_shape_id++;
+
+ if (shape_id == (MAX_SHAPE_ID + 1)) {
+ // TODO: Make an OutOfShapesError ??
+ rb_bug("Out of shapes");
+ }
+
+ return &GET_SHAPE_TREE()->shape_list[shape_id];
+}
+
+static rb_shape_t *
+rb_shape_alloc_with_parent_id(ID edge_name, shape_id_t parent_id)
+{
+ rb_shape_t * shape = shape_alloc();
+
+ shape->edge_name = edge_name;
+ shape->next_iv_index = 0;
+ shape->parent_id = parent_id;
+ shape->edges = NULL;
+
+ return shape;
+}
+
+static rb_shape_t *
+rb_shape_alloc(ID edge_name, rb_shape_t * parent, enum shape_type type)
+{
+ rb_shape_t * shape = rb_shape_alloc_with_parent_id(edge_name, rb_shape_id(parent));
+ shape->type = (uint8_t)type;
+ shape->size_pool_index = parent->size_pool_index;
+ shape->capacity = parent->capacity;
+ shape->edges = 0;
+ return shape;
+}
+
+#ifdef HAVE_MMAP
+static redblack_node_t *
+redblack_cache_ancestors(rb_shape_t * shape)
+{
+ if (!(shape->ancestor_index || shape->parent_id == INVALID_SHAPE_ID)) {
+ redblack_node_t * parent_index;
+
+ parent_index = redblack_cache_ancestors(rb_shape_get_parent(shape));
+
+ if (shape->type == SHAPE_IVAR) {
+ shape->ancestor_index = redblack_insert(parent_index, shape->edge_name, shape);
+
+#if RUBY_DEBUG
+ if (shape->ancestor_index) {
+ redblack_node_t *inserted_node = redblack_find(shape->ancestor_index, shape->edge_name);
+ RUBY_ASSERT(inserted_node);
+ RUBY_ASSERT(redblack_value(inserted_node) == shape);
+ }
+#endif
+ }
+ else {
+ shape->ancestor_index = parent_index;
+ }
+ }
+
+ return shape->ancestor_index;
+}
+#else
+static redblack_node_t *
+redblack_cache_ancestors(rb_shape_t * shape)
+{
+ return LEAF;
+}
+#endif
+
+static rb_shape_t *
+rb_shape_alloc_new_child(ID id, rb_shape_t * shape, enum shape_type shape_type)
+{
+ rb_shape_t * new_shape = rb_shape_alloc(id, shape, shape_type);
+
+ switch (shape_type) {
+ case SHAPE_IVAR:
+ if (UNLIKELY(shape->next_iv_index >= shape->capacity)) {
+ RUBY_ASSERT(shape->next_iv_index == shape->capacity);
+ new_shape->capacity = (uint32_t)rb_malloc_grow_capa(shape->capacity, sizeof(VALUE));
+ }
+ RUBY_ASSERT(new_shape->capacity > shape->next_iv_index);
+ new_shape->next_iv_index = shape->next_iv_index + 1;
+ if (new_shape->next_iv_index > ANCESTOR_CACHE_THRESHOLD) {
+ redblack_cache_ancestors(new_shape);
+ }
+ break;
+ case SHAPE_FROZEN:
+ new_shape->next_iv_index = shape->next_iv_index;
+ break;
+ case SHAPE_OBJ_TOO_COMPLEX:
+ case SHAPE_ROOT:
+ case SHAPE_T_OBJECT:
+ rb_bug("Unreachable");
+ break;
+ }
+
+ return new_shape;
+}
+
+static rb_shape_t*
+get_next_shape_internal(rb_shape_t * shape, ID id, enum shape_type shape_type, bool * variation_created, bool new_variations_allowed)
+{
+ rb_shape_t *res = NULL;
+
+ // There should never be outgoing edges from "too complex"
+ RUBY_ASSERT(rb_shape_id(shape) != OBJ_TOO_COMPLEX_SHAPE_ID);
+
+ *variation_created = false;
+
+ RB_VM_LOCK_ENTER();
+ {
+ // If the current shape has children
+ if (shape->edges) {
+ // Check if it only has one child
+ if (SINGLE_CHILD_P(shape->edges)) {
+ rb_shape_t * child = SINGLE_CHILD(shape->edges);
+ // If the one child has a matching edge name, then great,
+ // we found what we want.
+ if (child->edge_name == id) {
+ res = child;
+ }
+ }
+ else {
+ // If it has more than one child, do a hash lookup to find it.
+ VALUE lookup_result;
+ if (rb_id_table_lookup(shape->edges, id, &lookup_result)) {
+ res = (rb_shape_t *)lookup_result;
+ }
+ }
+ }
+
+ // If we didn't find the shape we're looking for we create it.
+ if (!res) {
+ // If we're not allowed to create a new variation, of if we're out of shapes
+ // we return TOO_COMPLEX_SHAPE.
+ if (!new_variations_allowed || GET_SHAPE_TREE()->next_shape_id > MAX_SHAPE_ID) {
+ res = rb_shape_get_shape_by_id(OBJ_TOO_COMPLEX_SHAPE_ID);
+ }
+ else {
+ rb_shape_t * new_shape = rb_shape_alloc_new_child(id, shape, shape_type);
+
+ if (!shape->edges) {
+ // If the shape had no edge yet, we can directly set the new child
+ shape->edges = TAG_SINGLE_CHILD(new_shape);
+ }
+ else {
+ // If the edge was single child we need to allocate a table.
+ if (SINGLE_CHILD_P(shape->edges)) {
+ rb_shape_t * old_child = SINGLE_CHILD(shape->edges);
+ shape->edges = rb_id_table_create(2);
+ rb_id_table_insert(shape->edges, old_child->edge_name, (VALUE)old_child);
+ }
+
+ rb_id_table_insert(shape->edges, new_shape->edge_name, (VALUE)new_shape);
+ *variation_created = true;
+ }
+
+ res = new_shape;
+ }
+ }
+ }
+ RB_VM_LOCK_LEAVE();
+
+ return res;
+}
+
+int
+rb_shape_frozen_shape_p(rb_shape_t* shape)
+{
+ return SHAPE_FROZEN == (enum shape_type)shape->type;
+}
+
+static rb_shape_t *
+remove_shape_recursive(rb_shape_t *shape, ID id, rb_shape_t **removed_shape)
+{
+ if (shape->parent_id == INVALID_SHAPE_ID) {
+ // We've hit the top of the shape tree and couldn't find the
+ // IV we wanted to remove, so return NULL
+ return NULL;
+ }
+ else {
+ if (shape->type == SHAPE_IVAR && shape->edge_name == id) {
+ *removed_shape = shape;
+
+ return rb_shape_get_parent(shape);
+ }
+ else {
+ // This isn't the IV we want to remove, keep walking up.
+ rb_shape_t *new_parent = remove_shape_recursive(rb_shape_get_parent(shape), id, removed_shape);
+
+ // We found a new parent. Create a child of the new parent that
+ // has the same attributes as this shape.
+ if (new_parent) {
+ if (UNLIKELY(new_parent->type == SHAPE_OBJ_TOO_COMPLEX)) {
+ return new_parent;
+ }
+
+ bool dont_care;
+ rb_shape_t *new_child = get_next_shape_internal(new_parent, shape->edge_name, shape->type, &dont_care, true);
+ if (UNLIKELY(new_child->type == SHAPE_OBJ_TOO_COMPLEX)) {
+ return new_child;
+ }
+
+ RUBY_ASSERT(new_child->capacity <= shape->capacity);
+
+ return new_child;
+ }
+ else {
+ // We went all the way to the top of the shape tree and couldn't
+ // find an IV to remove, so return NULL
+ return NULL;
+ }
+ }
+ }
+}
+
+bool
+rb_shape_transition_shape_remove_ivar(VALUE obj, ID id, rb_shape_t *shape, VALUE *removed)
+{
+ if (UNLIKELY(shape->type == SHAPE_OBJ_TOO_COMPLEX)) {
+ return false;
+ }
+
+ rb_shape_t *removed_shape = NULL;
+ rb_shape_t *new_shape = remove_shape_recursive(shape, id, &removed_shape);
+ if (new_shape) {
+ RUBY_ASSERT(removed_shape != NULL);
+
+ if (UNLIKELY(new_shape->type == SHAPE_OBJ_TOO_COMPLEX)) {
+ return false;
+ }
+
+ RUBY_ASSERT(new_shape->next_iv_index == shape->next_iv_index - 1);
+
+ VALUE *ivptr;
+ switch(BUILTIN_TYPE(obj)) {
+ case T_CLASS:
+ case T_MODULE:
+ ivptr = RCLASS_IVPTR(obj);
+ break;
+ case T_OBJECT:
+ ivptr = ROBJECT_IVPTR(obj);
+ break;
+ default: {
+ struct gen_ivtbl *ivtbl;
+ rb_gen_ivtbl_get(obj, id, &ivtbl);
+ ivptr = ivtbl->as.shape.ivptr;
+ break;
+ }
+ }
+
+ *removed = ivptr[removed_shape->next_iv_index - 1];
+
+ memmove(&ivptr[removed_shape->next_iv_index - 1], &ivptr[removed_shape->next_iv_index],
+ ((new_shape->next_iv_index + 1) - removed_shape->next_iv_index) * sizeof(VALUE));
+
+ // Re-embed objects when instances become small enough
+ // This is necessary because YJIT assumes that objects with the same shape
+ // have the same embeddedness for efficiency (avoid extra checks)
+ if (BUILTIN_TYPE(obj) == T_OBJECT &&
+ !RB_FL_TEST_RAW(obj, ROBJECT_EMBED) &&
+ rb_obj_embedded_size(new_shape->next_iv_index) <= rb_gc_obj_slot_size(obj)) {
+ RB_FL_SET_RAW(obj, ROBJECT_EMBED);
+ memcpy(ROBJECT_IVPTR(obj), ivptr, new_shape->next_iv_index * sizeof(VALUE));
+ xfree(ivptr);
+ }
+
+ rb_shape_set_shape(obj, new_shape);
+ }
+ return true;
+}
+
+rb_shape_t *
+rb_shape_transition_shape_frozen(VALUE obj)
+{
+ rb_shape_t* shape = rb_shape_get_shape(obj);
+ RUBY_ASSERT(shape);
+ RUBY_ASSERT(RB_OBJ_FROZEN(obj));
+
+ if (rb_shape_frozen_shape_p(shape) || rb_shape_obj_too_complex(obj)) {
+ return shape;
+ }
+
+ rb_shape_t* next_shape;
+
+ if (shape == rb_shape_get_root_shape()) {
+ return rb_shape_get_shape_by_id(SPECIAL_CONST_SHAPE_ID);
+ }
+
+ bool dont_care;
+ next_shape = get_next_shape_internal(shape, (ID)id_frozen, SHAPE_FROZEN, &dont_care, true);
+
+ RUBY_ASSERT(next_shape);
+ return next_shape;
+}
+
+/*
+ * This function is used for assertions where we don't want to increment
+ * max_iv_count
+ */
+rb_shape_t *
+rb_shape_get_next_iv_shape(rb_shape_t* shape, ID id)
+{
+ RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));
+ bool dont_care;
+ return get_next_shape_internal(shape, id, SHAPE_IVAR, &dont_care, true);
+}
+
+rb_shape_t *
+rb_shape_get_next(rb_shape_t *shape, VALUE obj, ID id)
+{
+ RUBY_ASSERT(!is_instance_id(id) || RTEST(rb_sym2str(ID2SYM(id))));
+ if (UNLIKELY(shape->type == SHAPE_OBJ_TOO_COMPLEX)) {
+ return shape;
+ }
+
+#if RUBY_DEBUG
+ attr_index_t index;
+ if (rb_shape_get_iv_index(shape, id, &index)) {
+ rb_bug("rb_shape_get_next: trying to create ivar that already exists at index %u", index);
+ }
+#endif
+
+ bool allow_new_shape = true;
+
+ if (BUILTIN_TYPE(obj) == T_OBJECT) {
+ VALUE klass = rb_obj_class(obj);
+ allow_new_shape = RCLASS_EXT(klass)->variation_count < SHAPE_MAX_VARIATIONS;
+ }
+
+ bool variation_created = false;
+ rb_shape_t *new_shape = get_next_shape_internal(shape, id, SHAPE_IVAR, &variation_created, allow_new_shape);
+
+ // Check if we should update max_iv_count on the object's class
+ if (BUILTIN_TYPE(obj) == T_OBJECT) {
+ VALUE klass = rb_obj_class(obj);
+ if (new_shape->next_iv_index > RCLASS_EXT(klass)->max_iv_count) {
+ RCLASS_EXT(klass)->max_iv_count = new_shape->next_iv_index;
+ }
+
+ if (variation_created) {
+ RCLASS_EXT(klass)->variation_count++;
+ if (rb_warning_category_enabled_p(RB_WARN_CATEGORY_PERFORMANCE)) {
+ if (RCLASS_EXT(klass)->variation_count >= SHAPE_MAX_VARIATIONS) {
+ rb_category_warn(
+ RB_WARN_CATEGORY_PERFORMANCE,
+ "The class %"PRIsVALUE" reached %d shape variations, instance variables accesses will be slower and memory usage increased.\n"
+ "It is recommended to define instance variables in a consistent order, for instance by eagerly defining them all in the #initialize method.",
+ rb_class_path(klass),
+ SHAPE_MAX_VARIATIONS
+ );
+ }
+ }
+ }
+ }
+
+ return new_shape;
+}
+
+// Same as rb_shape_get_iv_index, but uses a provided valid shape id and index
+// to return a result faster if branches of the shape tree are closely related.
+bool
+rb_shape_get_iv_index_with_hint(shape_id_t shape_id, ID id, attr_index_t *value, shape_id_t *shape_id_hint)
+{
+ attr_index_t index_hint = *value;
+ rb_shape_t *shape = rb_shape_get_shape_by_id(shape_id);
+ rb_shape_t *initial_shape = shape;
+
+ if (*shape_id_hint == INVALID_SHAPE_ID) {
+ *shape_id_hint = shape_id;
+ return rb_shape_get_iv_index(shape, id, value);
+ }
+
+ rb_shape_t * shape_hint = rb_shape_get_shape_by_id(*shape_id_hint);
+
+ // We assume it's likely shape_id_hint and shape_id have a close common
+ // ancestor, so we check up to ANCESTOR_SEARCH_MAX_DEPTH ancestors before
+ // eventually using the index, as in case of a match it will be faster.
+ // However if the shape doesn't have an index, we walk the entire tree.
+ int depth = INT_MAX;
+ if (shape->ancestor_index && shape->next_iv_index >= ANCESTOR_CACHE_THRESHOLD) {
+ depth = ANCESTOR_SEARCH_MAX_DEPTH;
+ }
+
+ while (depth > 0 && shape->next_iv_index > index_hint) {
+ while (shape_hint->next_iv_index > shape->next_iv_index) {
+ shape_hint = rb_shape_get_parent(shape_hint);
+ }
+
+ if (shape_hint == shape) {
+ // We've found a common ancestor so use the index hint
+ *value = index_hint;
+ *shape_id_hint = rb_shape_id(shape);
+ return true;
+ }
+ if (shape->edge_name == id) {
+ // We found the matching id before a common ancestor
+ *value = shape->next_iv_index - 1;
+ *shape_id_hint = rb_shape_id(shape);
+ return true;
+ }
+
+ shape = rb_shape_get_parent(shape);
+ depth--;
+ }
+
+ // If the original shape had an index but its ancestor doesn't
+ // we switch back to the original one as it will be faster.
+ if (!shape->ancestor_index && initial_shape->ancestor_index) {
+ shape = initial_shape;
+ }
+ *shape_id_hint = shape_id;
+ return rb_shape_get_iv_index(shape, id, value);
+}
+
+static bool
+shape_get_iv_index(rb_shape_t *shape, ID id, attr_index_t *value)
+{
+ while (shape->parent_id != INVALID_SHAPE_ID) {
+ if (shape->edge_name == id) {
+ enum shape_type shape_type;
+ shape_type = (enum shape_type)shape->type;
+
+ switch (shape_type) {
+ case SHAPE_IVAR:
+ RUBY_ASSERT(shape->next_iv_index > 0);
+ *value = shape->next_iv_index - 1;
+ return true;
+ case SHAPE_ROOT:
+ case SHAPE_T_OBJECT:
+ return false;
+ case SHAPE_OBJ_TOO_COMPLEX:
+ case SHAPE_FROZEN:
+ rb_bug("Ivar should not exist on transition");
+ }
+ }
+
+ shape = rb_shape_get_parent(shape);
+ }
+
+ return false;
+}
+
+static bool
+shape_cache_get_iv_index(rb_shape_t *shape, ID id, attr_index_t *value)
+{
+ if (shape->ancestor_index && shape->next_iv_index >= ANCESTOR_CACHE_THRESHOLD) {
+ redblack_node_t *node = redblack_find(shape->ancestor_index, id);
+ if (node) {
+ rb_shape_t *shape = redblack_value(node);
+ *value = shape->next_iv_index - 1;
+
+#if RUBY_DEBUG
+ attr_index_t shape_tree_index;
+ RUBY_ASSERT(shape_get_iv_index(shape, id, &shape_tree_index));
+ RUBY_ASSERT(shape_tree_index == *value);
+#endif
+
+ return true;
+ }
+
+ /* Verify the cache is correct by checking that this instance variable
+ * does not exist in the shape tree either. */
+ RUBY_ASSERT(!shape_get_iv_index(shape, id, value));
+ }
+
+ return false;
+}
+
+bool
+rb_shape_get_iv_index(rb_shape_t *shape, ID id, attr_index_t *value)
+{
+ // It doesn't make sense to ask for the index of an IV that's stored
+ // on an object that is "too complex" as it uses a hash for storing IVs
+ RUBY_ASSERT(rb_shape_id(shape) != OBJ_TOO_COMPLEX_SHAPE_ID);
+
+ if (!shape_cache_get_iv_index(shape, id, value)) {
+ // If it wasn't in the ancestor cache, then don't do a linear search
+ if (shape->ancestor_index && shape->next_iv_index >= ANCESTOR_CACHE_THRESHOLD) {
+ return false;
+ }
+ else {
+ return shape_get_iv_index(shape, id, value);
+ }
+ }
+
+ return true;
+}
+
+void
+rb_shape_set_shape(VALUE obj, rb_shape_t* shape)
+{
+ rb_shape_set_shape_id(obj, rb_shape_id(shape));
+}
+
+int32_t
+rb_shape_id_offset(void)
+{
+ return sizeof(uintptr_t) - SHAPE_ID_NUM_BITS / sizeof(uintptr_t);
+}
+
+rb_shape_t *
+rb_shape_traverse_from_new_root(rb_shape_t *initial_shape, rb_shape_t *dest_shape)
+{
+ RUBY_ASSERT(initial_shape->type == SHAPE_T_OBJECT);
+ rb_shape_t *next_shape = initial_shape;
+
+ if (dest_shape->type != initial_shape->type) {
+ next_shape = rb_shape_traverse_from_new_root(initial_shape, rb_shape_get_parent(dest_shape));
+ if (!next_shape) {
+ return NULL;
+ }
+ }
+
+ switch ((enum shape_type)dest_shape->type) {
+ case SHAPE_IVAR:
+ case SHAPE_FROZEN:
+ if (!next_shape->edges) {
+ return NULL;
+ }
+
+ VALUE lookup_result;
+ if (SINGLE_CHILD_P(next_shape->edges)) {
+ rb_shape_t * child = SINGLE_CHILD(next_shape->edges);
+ if (child->edge_name == dest_shape->edge_name) {
+ return child;
+ }
+ else {
+ return NULL;
+ }
+ }
+ else {
+ if (rb_id_table_lookup(next_shape->edges, dest_shape->edge_name, &lookup_result)) {
+ next_shape = (rb_shape_t *)lookup_result;
+ }
+ else {
+ return NULL;
+ }
+ }
+ break;
+ case SHAPE_ROOT:
+ case SHAPE_T_OBJECT:
+ break;
+ case SHAPE_OBJ_TOO_COMPLEX:
+ rb_bug("Unreachable");
+ break;
+ }
+
+ return next_shape;
+}
+
+rb_shape_t *
+rb_shape_rebuild_shape(rb_shape_t * initial_shape, rb_shape_t * dest_shape)
+{
+ RUBY_ASSERT(rb_shape_id(initial_shape) != OBJ_TOO_COMPLEX_SHAPE_ID);
+ RUBY_ASSERT(rb_shape_id(dest_shape) != OBJ_TOO_COMPLEX_SHAPE_ID);
+
+ rb_shape_t * midway_shape;
+
+ RUBY_ASSERT(initial_shape->type == SHAPE_T_OBJECT);
+
+ if (dest_shape->type != initial_shape->type) {
+ midway_shape = rb_shape_rebuild_shape(initial_shape, rb_shape_get_parent(dest_shape));
+ if (UNLIKELY(rb_shape_id(midway_shape) == OBJ_TOO_COMPLEX_SHAPE_ID)) {
+ return midway_shape;
+ }
+ }
+ else {
+ midway_shape = initial_shape;
+ }
+
+ switch ((enum shape_type)dest_shape->type) {
+ case SHAPE_IVAR:
+ midway_shape = rb_shape_get_next_iv_shape(midway_shape, dest_shape->edge_name);
+ break;
+ case SHAPE_ROOT:
+ case SHAPE_FROZEN:
+ case SHAPE_T_OBJECT:
+ break;
+ case SHAPE_OBJ_TOO_COMPLEX:
+ rb_bug("Unreachable");
+ break;
+ }
+
+ return midway_shape;
+}
+
+RUBY_FUNC_EXPORTED bool
+rb_shape_obj_too_complex(VALUE obj)
+{
+ return rb_shape_get_shape_id(obj) == OBJ_TOO_COMPLEX_SHAPE_ID;
+}
+
+size_t
+rb_shape_edges_count(rb_shape_t *shape)
+{
+ if (shape->edges) {
+ if (SINGLE_CHILD_P(shape->edges)) {
+ return 1;
+ }
+ else {
+ return rb_id_table_size(shape->edges);
+ }
+ }
+ return 0;
+}
+
+size_t
+rb_shape_memsize(rb_shape_t *shape)
+{
+ size_t memsize = sizeof(rb_shape_t);
+ if (shape->edges && !SINGLE_CHILD_P(shape->edges)) {
+ memsize += rb_id_table_memsize(shape->edges);
+ }
+ return memsize;
+}
+
+#if SHAPE_DEBUG
+/*
+ * Exposing Shape to Ruby via RubyVM.debug_shape
+ */
+
+/* :nodoc: */
+static VALUE
+rb_shape_too_complex(VALUE self)
+{
+ rb_shape_t * shape;
+ shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
+ if (rb_shape_id(shape) == OBJ_TOO_COMPLEX_SHAPE_ID) {
+ return Qtrue;
+ }
+ else {
+ return Qfalse;
+ }
+}
+
+static VALUE
+parse_key(ID key)
+{
+ if (is_instance_id(key)) {
+ return ID2SYM(key);
+ }
+ return LONG2NUM(key);
+}
+
+static VALUE rb_shape_edge_name(rb_shape_t * shape);
+
+static VALUE
+rb_shape_t_to_rb_cShape(rb_shape_t *shape)
+{
+ VALUE rb_cShape = rb_const_get(rb_cRubyVM, rb_intern("Shape"));
+
+ VALUE obj = rb_struct_new(rb_cShape,
+ INT2NUM(rb_shape_id(shape)),
+ INT2NUM(shape->parent_id),
+ rb_shape_edge_name(shape),
+ INT2NUM(shape->next_iv_index),
+ INT2NUM(shape->size_pool_index),
+ INT2NUM(shape->type),
+ INT2NUM(shape->capacity));
+ rb_obj_freeze(obj);
+ return obj;
+}
+
+static enum rb_id_table_iterator_result
+rb_edges_to_hash(ID key, VALUE value, void *ref)
+{
+ rb_hash_aset(*(VALUE *)ref, parse_key(key), rb_shape_t_to_rb_cShape((rb_shape_t*)value));
+ return ID_TABLE_CONTINUE;
+}
+
+/* :nodoc: */
+static VALUE
+rb_shape_edges(VALUE self)
+{
+ rb_shape_t* shape;
+
+ shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
+
+ VALUE hash = rb_hash_new();
+
+ if (shape->edges) {
+ if (SINGLE_CHILD_P(shape->edges)) {
+ rb_shape_t * child = SINGLE_CHILD(shape->edges);
+ rb_edges_to_hash(child->edge_name, (VALUE)child, &hash);
+ }
+ else {
+ rb_id_table_foreach(shape->edges, rb_edges_to_hash, &hash);
+ }
+ }
+
+ return hash;
+}
+
+static VALUE
+rb_shape_edge_name(rb_shape_t * shape)
+{
+ if (shape->edge_name) {
+ if (is_instance_id(shape->edge_name)) {
+ return ID2SYM(shape->edge_name);
+ }
+ return INT2NUM(shape->capacity);
+ }
+ return Qnil;
+}
+
+/* :nodoc: */
+static VALUE
+rb_shape_export_depth(VALUE self)
+{
+ rb_shape_t* shape;
+ shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
+ return SIZET2NUM(rb_shape_depth(shape));
+}
+
+/* :nodoc: */
+static VALUE
+rb_shape_parent(VALUE self)
+{
+ rb_shape_t * shape;
+ shape = rb_shape_get_shape_by_id(NUM2INT(rb_struct_getmember(self, rb_intern("id"))));
+ if (shape->parent_id != INVALID_SHAPE_ID) {
+ return rb_shape_t_to_rb_cShape(rb_shape_get_parent(shape));
+ }
+ else {
+ return Qnil;
+ }
+}
+
+/* :nodoc: */
+static VALUE
+rb_shape_debug_shape(VALUE self, VALUE obj)
+{
+ return rb_shape_t_to_rb_cShape(rb_shape_get_shape(obj));
+}
+
+/* :nodoc: */
+static VALUE
+rb_shape_root_shape(VALUE self)
+{
+ return rb_shape_t_to_rb_cShape(rb_shape_get_root_shape());
+}
+
+/* :nodoc: */
+static VALUE
+rb_shape_shapes_available(VALUE self)
+{
+ return INT2NUM(MAX_SHAPE_ID - (GET_SHAPE_TREE()->next_shape_id - 1));
+}
+
+/* :nodoc: */
+static VALUE
+rb_shape_exhaust(int argc, VALUE *argv, VALUE self)
+{
+ rb_check_arity(argc, 0, 1);
+ int offset = argc == 1 ? NUM2INT(argv[0]) : 0;
+ GET_SHAPE_TREE()->next_shape_id = MAX_SHAPE_ID - offset + 1;
+ return Qnil;
+}
+
+VALUE rb_obj_shape(rb_shape_t* shape);
+
+static enum rb_id_table_iterator_result collect_keys_and_values(ID key, VALUE value, void *ref)
+{
+ rb_hash_aset(*(VALUE *)ref, parse_key(key), rb_obj_shape((rb_shape_t*)value));
+ return ID_TABLE_CONTINUE;
+}
+
+static VALUE edges(struct rb_id_table* edges)
+{
+ VALUE hash = rb_hash_new();
+ if (SINGLE_CHILD_P(edges)) {
+ rb_shape_t * child = SINGLE_CHILD(edges);
+ collect_keys_and_values(child->edge_name, (VALUE)child, &hash);
+ }
+ else {
+ rb_id_table_foreach(edges, collect_keys_and_values, &hash);
+ }
+ return hash;
+}
+
+/* :nodoc: */
+VALUE
+rb_obj_shape(rb_shape_t* shape)
+{
+ VALUE rb_shape = rb_hash_new();
+
+ rb_hash_aset(rb_shape, ID2SYM(rb_intern("id")), INT2NUM(rb_shape_id(shape)));
+ rb_hash_aset(rb_shape, ID2SYM(rb_intern("edges")), edges(shape->edges));
+
+ if (shape == rb_shape_get_root_shape()) {
+ rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(ROOT_SHAPE_ID));
+ }
+ else {
+ rb_hash_aset(rb_shape, ID2SYM(rb_intern("parent_id")), INT2NUM(shape->parent_id));
+ }
+
+ rb_hash_aset(rb_shape, ID2SYM(rb_intern("edge_name")), rb_id2str(shape->edge_name));
+ return rb_shape;
+}
+
+/* :nodoc: */
+static VALUE
+shape_transition_tree(VALUE self)
+{
+ return rb_obj_shape(rb_shape_get_root_shape());
+}
+
+/* :nodoc: */
+static VALUE
+rb_shape_find_by_id(VALUE mod, VALUE id)
+{
+ shape_id_t shape_id = NUM2UINT(id);
+ if (shape_id >= GET_SHAPE_TREE()->next_shape_id) {
+ rb_raise(rb_eArgError, "Shape ID %d is out of bounds\n", shape_id);
+ }
+ return rb_shape_t_to_rb_cShape(rb_shape_get_shape_by_id(shape_id));
+}
+#endif
+
+#ifdef HAVE_MMAP
+#include <sys/mman.h>
+#endif
+
+void
+Init_default_shapes(void)
+{
+ rb_shape_tree_t *st = ruby_mimcalloc(1, sizeof(rb_shape_tree_t));
+ rb_shape_tree_ptr = st;
+
+#ifdef HAVE_MMAP
+ rb_shape_tree_ptr->shape_list = (rb_shape_t *)mmap(NULL, rb_size_mul_or_raise(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t), rb_eRuntimeError),
+ PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ if (GET_SHAPE_TREE()->shape_list == MAP_FAILED) {
+ GET_SHAPE_TREE()->shape_list = 0;
+ }
+#else
+ GET_SHAPE_TREE()->shape_list = xcalloc(SHAPE_BUFFER_SIZE, sizeof(rb_shape_t));
+#endif
+
+ if (!GET_SHAPE_TREE()->shape_list) {
+ rb_memerror();
+ }
+
+ id_frozen = rb_make_internal_id();
+ id_t_object = rb_make_internal_id();
+
+#ifdef HAVE_MMAP
+ rb_shape_tree_ptr->shape_cache = (redblack_node_t *)mmap(NULL, rb_size_mul_or_raise(REDBLACK_CACHE_SIZE, sizeof(redblack_node_t), rb_eRuntimeError),
+ PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ rb_shape_tree_ptr->cache_size = 0;
+
+ // If mmap fails, then give up on the redblack tree cache.
+ // We set the cache size such that the redblack node allocators think
+ // the cache is full.
+ if (GET_SHAPE_TREE()->shape_cache == MAP_FAILED) {
+ GET_SHAPE_TREE()->shape_cache = 0;
+ GET_SHAPE_TREE()->cache_size = REDBLACK_CACHE_SIZE;
+ }
+#endif
+
+ // Root shape
+ rb_shape_t *root = rb_shape_alloc_with_parent_id(0, INVALID_SHAPE_ID);
+ root->capacity = 0;
+ root->type = SHAPE_ROOT;
+ root->size_pool_index = 0;
+ GET_SHAPE_TREE()->root_shape = root;
+ RUBY_ASSERT(rb_shape_id(GET_SHAPE_TREE()->root_shape) == ROOT_SHAPE_ID);
+
+ bool dont_care;
+ // Special const shape
+#if RUBY_DEBUG
+ rb_shape_t *special_const_shape =
+#endif
+ get_next_shape_internal(root, (ID)id_frozen, SHAPE_FROZEN, &dont_care, true);
+ RUBY_ASSERT(rb_shape_id(special_const_shape) == SPECIAL_CONST_SHAPE_ID);
+ RUBY_ASSERT(SPECIAL_CONST_SHAPE_ID == (GET_SHAPE_TREE()->next_shape_id - 1));
+ RUBY_ASSERT(rb_shape_frozen_shape_p(special_const_shape));
+
+ rb_shape_t *too_complex_shape = rb_shape_alloc_with_parent_id(0, ROOT_SHAPE_ID);
+ too_complex_shape->type = SHAPE_OBJ_TOO_COMPLEX;
+ too_complex_shape->size_pool_index = 0;
+ RUBY_ASSERT(OBJ_TOO_COMPLEX_SHAPE_ID == (GET_SHAPE_TREE()->next_shape_id - 1));
+ RUBY_ASSERT(rb_shape_id(too_complex_shape) == OBJ_TOO_COMPLEX_SHAPE_ID);
+
+ // Make shapes for T_OBJECT
+ size_t *sizes = rb_gc_size_pool_sizes();
+ for (int i = 0; sizes[i] > 0; i++) {
+ rb_shape_t *t_object_shape = rb_shape_alloc_with_parent_id(0, INVALID_SHAPE_ID);
+ t_object_shape->type = SHAPE_T_OBJECT;
+ t_object_shape->size_pool_index = i;
+ t_object_shape->capacity = (uint32_t)((sizes[i] - offsetof(struct RObject, as.ary)) / sizeof(VALUE));
+ t_object_shape->edges = rb_id_table_create(0);
+ t_object_shape->ancestor_index = LEAF;
+ RUBY_ASSERT(rb_shape_id(t_object_shape) == (shape_id_t)(i + FIRST_T_OBJECT_SHAPE_ID));
+ }
+}
+
+void
+Init_shape(void)
+{
+#if SHAPE_DEBUG
+ VALUE rb_cShape = rb_struct_define_under(rb_cRubyVM, "Shape",
+ "id",
+ "parent_id",
+ "edge_name",
+ "next_iv_index",
+ "size_pool_index",
+ "type",
+ "capacity",
+ NULL);
+
+ rb_define_method(rb_cShape, "parent", rb_shape_parent, 0);
+ rb_define_method(rb_cShape, "edges", rb_shape_edges, 0);
+ rb_define_method(rb_cShape, "depth", rb_shape_export_depth, 0);
+ rb_define_method(rb_cShape, "too_complex?", rb_shape_too_complex, 0);
+ rb_define_const(rb_cShape, "SHAPE_ROOT", INT2NUM(SHAPE_ROOT));
+ rb_define_const(rb_cShape, "SHAPE_IVAR", INT2NUM(SHAPE_IVAR));
+ rb_define_const(rb_cShape, "SHAPE_T_OBJECT", INT2NUM(SHAPE_T_OBJECT));
+ rb_define_const(rb_cShape, "SHAPE_FROZEN", INT2NUM(SHAPE_FROZEN));
+ rb_define_const(rb_cShape, "SHAPE_ID_NUM_BITS", INT2NUM(SHAPE_ID_NUM_BITS));
+ rb_define_const(rb_cShape, "SHAPE_FLAG_SHIFT", INT2NUM(SHAPE_FLAG_SHIFT));
+ rb_define_const(rb_cShape, "SPECIAL_CONST_SHAPE_ID", INT2NUM(SPECIAL_CONST_SHAPE_ID));
+ rb_define_const(rb_cShape, "OBJ_TOO_COMPLEX_SHAPE_ID", INT2NUM(OBJ_TOO_COMPLEX_SHAPE_ID));
+ rb_define_const(rb_cShape, "FIRST_T_OBJECT_SHAPE_ID", INT2NUM(FIRST_T_OBJECT_SHAPE_ID));
+ rb_define_const(rb_cShape, "SHAPE_MAX_VARIATIONS", INT2NUM(SHAPE_MAX_VARIATIONS));
+ rb_define_const(rb_cShape, "SIZEOF_RB_SHAPE_T", INT2NUM(sizeof(rb_shape_t)));
+ rb_define_const(rb_cShape, "SIZEOF_REDBLACK_NODE_T", INT2NUM(sizeof(redblack_node_t)));
+ rb_define_const(rb_cShape, "SHAPE_BUFFER_SIZE", INT2NUM(sizeof(rb_shape_t) * SHAPE_BUFFER_SIZE));
+ rb_define_const(rb_cShape, "REDBLACK_CACHE_SIZE", INT2NUM(sizeof(redblack_node_t) * REDBLACK_CACHE_SIZE));
+
+ rb_define_singleton_method(rb_cShape, "transition_tree", shape_transition_tree, 0);
+ rb_define_singleton_method(rb_cShape, "find_by_id", rb_shape_find_by_id, 1);
+ rb_define_singleton_method(rb_cShape, "of", rb_shape_debug_shape, 1);
+ rb_define_singleton_method(rb_cShape, "root_shape", rb_shape_root_shape, 0);
+ rb_define_singleton_method(rb_cShape, "shapes_available", rb_shape_shapes_available, 0);
+ rb_define_singleton_method(rb_cShape, "exhaust_shapes", rb_shape_exhaust, -1);
+#endif
+}