summaryrefslogtreecommitdiff
path: root/ruby_1_9_3/lib/matrix.rb
diff options
context:
space:
mode:
Diffstat (limited to 'ruby_1_9_3/lib/matrix.rb')
-rw-r--r--ruby_1_9_3/lib/matrix.rb1866
1 files changed, 0 insertions, 1866 deletions
diff --git a/ruby_1_9_3/lib/matrix.rb b/ruby_1_9_3/lib/matrix.rb
deleted file mode 100644
index 3c078c0c06..0000000000
--- a/ruby_1_9_3/lib/matrix.rb
+++ /dev/null
@@ -1,1866 +0,0 @@
-# encoding: utf-8
-#
-# = matrix.rb
-#
-# An implementation of Matrix and Vector classes.
-#
-# See classes Matrix and Vector for documentation.
-#
-# Current Maintainer:: Marc-André Lafortune
-# Original Author:: Keiju ISHITSUKA
-# Original Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly))
-##
-
-require "e2mmap.rb"
-
-module ExceptionForMatrix # :nodoc:
- extend Exception2MessageMapper
- def_e2message(TypeError, "wrong argument type %s (expected %s)")
- def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)")
-
- def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch")
- def_exception("ErrNotRegular", "Not Regular Matrix")
- def_exception("ErrOperationNotDefined", "Operation(%s) can\\'t be defined: %s op %s")
- def_exception("ErrOperationNotImplemented", "Sorry, Operation(%s) not implemented: %s op %s")
-end
-
-#
-# The +Matrix+ class represents a mathematical matrix. It provides methods for creating
-# matrices, operating on them arithmetically and algebraically,
-# and determining their mathematical properties (trace, rank, inverse, determinant).
-#
-# == Method Catalogue
-#
-# To create a matrix:
-# * <tt> Matrix[*rows] </tt>
-# * <tt> Matrix.[](*rows) </tt>
-# * <tt> Matrix.rows(rows, copy = true) </tt>
-# * <tt> Matrix.columns(columns) </tt>
-# * <tt> Matrix.build(row_size, column_size, &block) </tt>
-# * <tt> Matrix.diagonal(*values) </tt>
-# * <tt> Matrix.scalar(n, value) </tt>
-# * <tt> Matrix.identity(n) </tt>
-# * <tt> Matrix.unit(n) </tt>
-# * <tt> Matrix.I(n) </tt>
-# * <tt> Matrix.zero(n) </tt>
-# * <tt> Matrix.row_vector(row) </tt>
-# * <tt> Matrix.column_vector(column) </tt>
-#
-# To access Matrix elements/columns/rows/submatrices/properties:
-# * <tt> [](i, j) </tt>
-# * <tt> #row_size </tt>
-# * <tt> #column_size </tt>
-# * <tt> #row(i) </tt>
-# * <tt> #column(j) </tt>
-# * <tt> #collect </tt>
-# * <tt> #map </tt>
-# * <tt> #each </tt>
-# * <tt> #each_with_index </tt>
-# * <tt> #find_index </tt>
-# * <tt> #minor(*param) </tt>
-#
-# Properties of a matrix:
-# * <tt> #diagonal? </tt>
-# * <tt> #empty? </tt>
-# * <tt> #hermitian? </tt>
-# * <tt> #lower_triangular? </tt>
-# * <tt> #normal? </tt>
-# * <tt> #orthogonal? </tt>
-# * <tt> #permutation? </tt>
-# * <tt> #real? </tt>
-# * <tt> #regular? </tt>
-# * <tt> #singular? </tt>
-# * <tt> #square? </tt>
-# * <tt> #symmetric? </tt>
-# * <tt> #unitary? </tt>
-# * <tt> #upper_triangular? </tt>
-# * <tt> #zero? </tt>
-#
-# Matrix arithmetic:
-# * <tt> *(m) </tt>
-# * <tt> +(m) </tt>
-# * <tt> -(m) </tt>
-# * <tt> #/(m) </tt>
-# * <tt> #inverse </tt>
-# * <tt> #inv </tt>
-# * <tt> ** </tt>
-#
-# Matrix functions:
-# * <tt> #determinant </tt>
-# * <tt> #det </tt>
-# * <tt> #rank </tt>
-# * <tt> #round </tt>
-# * <tt> #trace </tt>
-# * <tt> #tr </tt>
-# * <tt> #transpose </tt>
-# * <tt> #t </tt>
-#
-# Matrix decompositions:
-# * <tt> #eigen </tt>
-# * <tt> #eigensystem </tt>
-# * <tt> #lup </tt>
-# * <tt> #lup_decomposition </tt>
-#
-# Complex arithmetic:
-# * <tt> conj </tt>
-# * <tt> conjugate </tt>
-# * <tt> imag </tt>
-# * <tt> imaginary </tt>
-# * <tt> real </tt>
-# * <tt> rect </tt>
-# * <tt> rectangular </tt>
-#
-# Conversion to other data types:
-# * <tt> #coerce(other) </tt>
-# * <tt> #row_vectors </tt>
-# * <tt> #column_vectors </tt>
-# * <tt> #to_a </tt>
-#
-# String representations:
-# * <tt> #to_s </tt>
-# * <tt> #inspect </tt>
-#
-class Matrix
- include Enumerable
- include ExceptionForMatrix
- autoload :EigenvalueDecomposition, "matrix/eigenvalue_decomposition"
- autoload :LUPDecomposition, "matrix/lup_decomposition"
-
- # instance creations
- private_class_method :new
- attr_reader :rows
- protected :rows
-
- #
- # Creates a matrix where each argument is a row.
- # Matrix[ [25, 93], [-1, 66] ]
- # => 25 93
- # -1 66
- #
- def Matrix.[](*rows)
- Matrix.rows(rows, false)
- end
-
- #
- # Creates a matrix where +rows+ is an array of arrays, each of which is a row
- # of the matrix. If the optional argument +copy+ is false, use the given
- # arrays as the internal structure of the matrix without copying.
- # Matrix.rows([[25, 93], [-1, 66]])
- # => 25 93
- # -1 66
- #
- def Matrix.rows(rows, copy = true)
- rows = convert_to_array(rows)
- rows.map! do |row|
- convert_to_array(row, copy)
- end
- size = (rows[0] || []).size
- rows.each do |row|
- Matrix.Raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
- end
- new rows, size
- end
-
- #
- # Creates a matrix using +columns+ as an array of column vectors.
- # Matrix.columns([[25, 93], [-1, 66]])
- # => 25 -1
- # 93 66
- #
- def Matrix.columns(columns)
- Matrix.rows(columns, false).transpose
- end
-
- #
- # Creates a matrix of size +row_size+ x +column_size+.
- # It fills the values by calling the given block,
- # passing the current row and column.
- # Returns an enumerator if no block is given.
- #
- # m = Matrix.build(2, 4) {|row, col| col - row }
- # => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
- # m = Matrix.build(3) { rand }
- # => a 3x3 matrix with random elements
- #
- def Matrix.build(row_size, column_size = row_size)
- row_size = CoercionHelper.coerce_to_int(row_size)
- column_size = CoercionHelper.coerce_to_int(column_size)
- raise ArgumentError if row_size < 0 || column_size < 0
- return to_enum :build, row_size, column_size unless block_given?
- rows = Array.new(row_size) do |i|
- Array.new(column_size) do |j|
- yield i, j
- end
- end
- new rows, column_size
- end
-
- #
- # Creates a matrix where the diagonal elements are composed of +values+.
- # Matrix.diagonal(9, 5, -3)
- # => 9 0 0
- # 0 5 0
- # 0 0 -3
- #
- def Matrix.diagonal(*values)
- size = values.size
- rows = Array.new(size) {|j|
- row = Array.new(size, 0)
- row[j] = values[j]
- row
- }
- new rows
- end
-
- #
- # Creates an +n+ by +n+ diagonal matrix where each diagonal element is
- # +value+.
- # Matrix.scalar(2, 5)
- # => 5 0
- # 0 5
- #
- def Matrix.scalar(n, value)
- Matrix.diagonal(*Array.new(n, value))
- end
-
- #
- # Creates an +n+ by +n+ identity matrix.
- # Matrix.identity(2)
- # => 1 0
- # 0 1
- #
- def Matrix.identity(n)
- Matrix.scalar(n, 1)
- end
- class << Matrix
- alias unit identity
- alias I identity
- end
-
- #
- # Creates a zero matrix.
- # Matrix.zero(2)
- # => 0 0
- # 0 0
- #
- def Matrix.zero(row_size, column_size = row_size)
- rows = Array.new(row_size){Array.new(column_size, 0)}
- new rows, column_size
- end
-
- #
- # Creates a single-row matrix where the values of that row are as given in
- # +row+.
- # Matrix.row_vector([4,5,6])
- # => 4 5 6
- #
- def Matrix.row_vector(row)
- row = convert_to_array(row)
- new [row]
- end
-
- #
- # Creates a single-column matrix where the values of that column are as given
- # in +column+.
- # Matrix.column_vector([4,5,6])
- # => 4
- # 5
- # 6
- #
- def Matrix.column_vector(column)
- column = convert_to_array(column)
- new [column].transpose, 1
- end
-
- #
- # Creates a empty matrix of +row_size+ x +column_size+.
- # At least one of +row_size+ or +column_size+ must be 0.
- #
- # m = Matrix.empty(2, 0)
- # m == Matrix[ [], [] ]
- # => true
- # n = Matrix.empty(0, 3)
- # n == Matrix.columns([ [], [], [] ])
- # => true
- # m * n
- # => Matrix[[0, 0, 0], [0, 0, 0]]
- #
- def Matrix.empty(row_size = 0, column_size = 0)
- Matrix.Raise ArgumentError, "One size must be 0" if column_size != 0 && row_size != 0
- Matrix.Raise ArgumentError, "Negative size" if column_size < 0 || row_size < 0
-
- new([[]]*row_size, column_size)
- end
-
- #
- # Matrix.new is private; use Matrix.rows, columns, [], etc... to create.
- #
- def initialize(rows, column_size = rows[0].size)
- # No checking is done at this point. rows must be an Array of Arrays.
- # column_size must be the size of the first row, if there is one,
- # otherwise it *must* be specified and can be any integer >= 0
- @rows = rows
- @column_size = column_size
- end
-
- def new_matrix(rows, column_size = rows[0].size) # :nodoc:
- Matrix.send(:new, rows, column_size) # bypass privacy of Matrix.new
- end
- private :new_matrix
-
- #
- # Returns element (+i+,+j+) of the matrix. That is: row +i+, column +j+.
- #
- def [](i, j)
- @rows.fetch(i){return nil}[j]
- end
- alias element []
- alias component []
-
- def []=(i, j, v)
- @rows[i][j] = v
- end
- alias set_element []=
- alias set_component []=
- private :[]=, :set_element, :set_component
-
- #
- # Returns the number of rows.
- #
- def row_size
- @rows.size
- end
-
- #
- # Returns the number of columns.
- #
- attr_reader :column_size
-
- #
- # Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
- # an array). When a block is given, the elements of that vector are iterated.
- #
- def row(i, &block) # :yield: e
- if block_given?
- @rows.fetch(i){return self}.each(&block)
- self
- else
- Vector.elements(@rows.fetch(i){return nil})
- end
- end
-
- #
- # Returns column vector number +j+ of the matrix as a Vector (starting at 0
- # like an array). When a block is given, the elements of that vector are
- # iterated.
- #
- def column(j) # :yield: e
- if block_given?
- return self if j >= column_size || j < -column_size
- row_size.times do |i|
- yield @rows[i][j]
- end
- self
- else
- return nil if j >= column_size || j < -column_size
- col = Array.new(row_size) {|i|
- @rows[i][j]
- }
- Vector.elements(col, false)
- end
- end
-
- #
- # Returns a matrix that is the result of iteration of the given block over all
- # elements of the matrix.
- # Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
- # => 1 4
- # 9 16
- #
- def collect(&block) # :yield: e
- return to_enum(:collect) unless block_given?
- rows = @rows.collect{|row| row.collect(&block)}
- new_matrix rows, column_size
- end
- alias map collect
-
- #
- # Yields all elements of the matrix, starting with those of the first row,
- # or returns an Enumerator is no block given.
- # Elements can be restricted by passing an argument:
- # * :all (default): yields all elements
- # * :diagonal: yields only elements on the diagonal
- # * :off_diagonal: yields all elements except on the diagonal
- # * :lower: yields only elements on or below the diagonal
- # * :strict_lower: yields only elements below the diagonal
- # * :strict_upper: yields only elements above the diagonal
- # * :upper: yields only elements on or above the diagonal
- #
- # Matrix[ [1,2], [3,4] ].each { |e| puts e }
- # # => prints the numbers 1 to 4
- # Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
- #
- def each(which = :all) # :yield: e
- return to_enum :each, which unless block_given?
- last = column_size - 1
- case which
- when :all
- block = Proc.new
- @rows.each do |row|
- row.each(&block)
- end
- when :diagonal
- @rows.each_with_index do |row, row_index|
- yield row.fetch(row_index){return self}
- end
- when :off_diagonal
- @rows.each_with_index do |row, row_index|
- column_size.times do |col_index|
- yield row[col_index] unless row_index == col_index
- end
- end
- when :lower
- @rows.each_with_index do |row, row_index|
- 0.upto([row_index, last].min) do |col_index|
- yield row[col_index]
- end
- end
- when :strict_lower
- @rows.each_with_index do |row, row_index|
- [row_index, column_size].min.times do |col_index|
- yield row[col_index]
- end
- end
- when :strict_upper
- @rows.each_with_index do |row, row_index|
- (row_index+1).upto(last) do |col_index|
- yield row[col_index]
- end
- end
- when :upper
- @rows.each_with_index do |row, row_index|
- row_index.upto(last) do |col_index|
- yield row[col_index]
- end
- end
- else
- Matrix.Raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
- end
- self
- end
-
- #
- # Same as #each, but the row index and column index in addition to the element
- #
- # Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
- # puts "#{e} at #{row}, #{col}"
- # end
- # # => Prints:
- # # 1 at 0, 0
- # # 2 at 0, 1
- # # 3 at 1, 0
- # # 4 at 1, 1
- #
- def each_with_index(which = :all) # :yield: e, row, column
- return to_enum :each_with_index, which unless block_given?
- last = column_size - 1
- case which
- when :all
- @rows.each_with_index do |row, row_index|
- row.each_with_index do |e, col_index|
- yield e, row_index, col_index
- end
- end
- when :diagonal
- @rows.each_with_index do |row, row_index|
- yield row.fetch(row_index){return self}, row_index, row_index
- end
- when :off_diagonal
- @rows.each_with_index do |row, row_index|
- column_size.times do |col_index|
- yield row[col_index], row_index, col_index unless row_index == col_index
- end
- end
- when :lower
- @rows.each_with_index do |row, row_index|
- 0.upto([row_index, last].min) do |col_index|
- yield row[col_index], row_index, col_index
- end
- end
- when :strict_lower
- @rows.each_with_index do |row, row_index|
- [row_index, column_size].min.times do |col_index|
- yield row[col_index], row_index, col_index
- end
- end
- when :strict_upper
- @rows.each_with_index do |row, row_index|
- (row_index+1).upto(last) do |col_index|
- yield row[col_index], row_index, col_index
- end
- end
- when :upper
- @rows.each_with_index do |row, row_index|
- row_index.upto(last) do |col_index|
- yield row[col_index], row_index, col_index
- end
- end
- else
- Matrix.Raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
- end
- self
- end
-
- SELECTORS = {all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
- #
- # :call-seq:
- # index(value, selector = :all) -> [row, column]
- # index(selector = :all){ block } -> [row, column]
- # index(selector = :all) -> an_enumerator
- #
- # The index method is specialized to return the index as [row, column]
- # It also accepts an optional +selector+ argument, see #each for details.
- #
- # Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
- # Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
- #
- def index(*args)
- raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
- which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
- return to_enum :find_index, which, *args unless block_given? || args.size == 1
- if args.size == 1
- value = args.first
- each_with_index(which) do |e, row_index, col_index|
- return row_index, col_index if e == value
- end
- else
- each_with_index(which) do |e, row_index, col_index|
- return row_index, col_index if yield e
- end
- end
- nil
- end
- alias_method :find_index, :index
- #
- # Returns a section of the matrix. The parameters are either:
- # * start_row, nrows, start_col, ncols; OR
- # * row_range, col_range
- #
- # Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
- # => 9 0 0
- # 0 5 0
- #
- # Like Array#[], negative indices count backward from the end of the
- # row or column (-1 is the last element). Returns nil if the starting
- # row or column is greater than row_size or column_size respectively.
- #
- def minor(*param)
- case param.size
- when 2
- row_range, col_range = param
- from_row = row_range.first
- from_row += row_size if from_row < 0
- to_row = row_range.end
- to_row += row_size if to_row < 0
- to_row += 1 unless row_range.exclude_end?
- size_row = to_row - from_row
-
- from_col = col_range.first
- from_col += column_size if from_col < 0
- to_col = col_range.end
- to_col += column_size if to_col < 0
- to_col += 1 unless col_range.exclude_end?
- size_col = to_col - from_col
- when 4
- from_row, size_row, from_col, size_col = param
- return nil if size_row < 0 || size_col < 0
- from_row += row_size if from_row < 0
- from_col += column_size if from_col < 0
- else
- Matrix.Raise ArgumentError, param.inspect
- end
-
- return nil if from_row > row_size || from_col > column_size || from_row < 0 || from_col < 0
- rows = @rows[from_row, size_row].collect{|row|
- row[from_col, size_col]
- }
- new_matrix rows, [column_size - from_col, size_col].min
- end
-
- #--
- # TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Returns +true+ is this is a diagonal matrix.
- # Raises an error if matrix is not square.
- #
- def diagonal?
- Matrix.Raise ErrDimensionMismatch unless square?
- each(:off_diagonal).all?(&:zero?)
- end
-
- #
- # Returns +true+ if this is an empty matrix, i.e. if the number of rows
- # or the number of columns is 0.
- #
- def empty?
- column_size == 0 || row_size == 0
- end
-
- #
- # Returns +true+ is this is an hermitian matrix.
- # Raises an error if matrix is not square.
- #
- def hermitian?
- Matrix.Raise ErrDimensionMismatch unless square?
- each_with_index(:strict_upper).all? do |e, row, col|
- e == rows[col][row].conj
- end
- end
-
- #
- # Returns +true+ is this is a lower triangular matrix.
- #
- def lower_triangular?
- each(:strict_upper).all?(&:zero?)
- end
-
- #
- # Returns +true+ is this is a normal matrix.
- # Raises an error if matrix is not square.
- #
- def normal?
- Matrix.Raise ErrDimensionMismatch unless square?
- rows.each_with_index do |row_i, i|
- rows.each_with_index do |row_j, j|
- s = 0
- rows.each_with_index do |row_k, k|
- s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
- end
- return false unless s == 0
- end
- end
- true
- end
-
- #
- # Returns +true+ is this is an orthogonal matrix
- # Raises an error if matrix is not square.
- #
- def orthogonal?
- Matrix.Raise ErrDimensionMismatch unless square?
- rows.each_with_index do |row, i|
- column_size.times do |j|
- s = 0
- row_size.times do |k|
- s += row[k] * rows[k][j]
- end
- return false unless s == (i == j ? 1 : 0)
- end
- end
- true
- end
-
- #
- # Returns +true+ is this is a permutation matrix
- # Raises an error if matrix is not square.
- #
- def permutation?
- Matrix.Raise ErrDimensionMismatch unless square?
- cols = Array.new(column_size)
- rows.each_with_index do |row, i|
- found = false
- row.each_with_index do |e, j|
- if e == 1
- return false if found || cols[j]
- found = cols[j] = true
- elsif e != 0
- return false
- end
- end
- return false unless found
- end
- true
- end
-
- #
- # Returns +true+ if all entries of the matrix are real.
- #
- def real?
- all?(&:real?)
- end
-
- #
- # Returns +true+ if this is a regular (i.e. non-singular) matrix.
- #
- def regular?
- not singular?
- end
-
- #
- # Returns +true+ is this is a singular matrix.
- #
- def singular?
- determinant == 0
- end
-
- #
- # Returns +true+ is this is a square matrix.
- #
- def square?
- column_size == row_size
- end
-
- #
- # Returns +true+ is this is a symmetric matrix.
- # Raises an error if matrix is not square.
- #
- def symmetric?
- Matrix.Raise ErrDimensionMismatch unless square?
- each_with_index(:strict_upper).all? do |e, row, col|
- e == rows[col][row]
- end
- end
-
- #
- # Returns +true+ is this is a unitary matrix
- # Raises an error if matrix is not square.
- #
- def unitary?
- Matrix.Raise ErrDimensionMismatch unless square?
- rows.each_with_index do |row, i|
- column_size.times do |j|
- s = 0
- row_size.times do |k|
- s += row[k].conj * rows[k][j]
- end
- return false unless s == (i == j ? 1 : 0)
- end
- end
- true
- end
-
- #
- # Returns +true+ is this is an upper triangular matrix.
- #
- def upper_triangular?
- each(:strict_lower).all?(&:zero?)
- end
-
- #
- # Returns +true+ is this is a matrix with only zero elements
- #
- def zero?
- all?(&:zero?)
- end
-
- #--
- # OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Returns +true+ if and only if the two matrices contain equal elements.
- #
- def ==(other)
- return false unless Matrix === other &&
- column_size == other.column_size # necessary for empty matrices
- rows == other.rows
- end
-
- def eql?(other)
- return false unless Matrix === other &&
- column_size == other.column_size # necessary for empty matrices
- rows.eql? other.rows
- end
-
- #
- # Returns a clone of the matrix, so that the contents of each do not reference
- # identical objects.
- # There should be no good reason to do this since Matrices are immutable.
- #
- def clone
- new_matrix @rows.map(&:dup), column_size
- end
-
- #
- # Returns a hash-code for the matrix.
- #
- def hash
- @rows.hash
- end
-
- #--
- # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Matrix multiplication.
- # Matrix[[2,4], [6,8]] * Matrix.identity(2)
- # => 2 4
- # 6 8
- #
- def *(m) # m is matrix or vector or number
- case(m)
- when Numeric
- rows = @rows.collect {|row|
- row.collect {|e| e * m }
- }
- return new_matrix rows, column_size
- when Vector
- m = Matrix.column_vector(m)
- r = self * m
- return r.column(0)
- when Matrix
- Matrix.Raise ErrDimensionMismatch if column_size != m.row_size
-
- rows = Array.new(row_size) {|i|
- Array.new(m.column_size) {|j|
- (0 ... column_size).inject(0) do |vij, k|
- vij + self[i, k] * m[k, j]
- end
- }
- }
- return new_matrix rows, m.column_size
- else
- return apply_through_coercion(m, __method__)
- end
- end
-
- #
- # Matrix addition.
- # Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
- # => 6 0
- # -4 12
- #
- def +(m)
- case m
- when Numeric
- Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class
- when Vector
- m = Matrix.column_vector(m)
- when Matrix
- else
- return apply_through_coercion(m, __method__)
- end
-
- Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
-
- rows = Array.new(row_size) {|i|
- Array.new(column_size) {|j|
- self[i, j] + m[i, j]
- }
- }
- new_matrix rows, column_size
- end
-
- #
- # Matrix subtraction.
- # Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
- # => -8 2
- # 8 1
- #
- def -(m)
- case m
- when Numeric
- Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class
- when Vector
- m = Matrix.column_vector(m)
- when Matrix
- else
- return apply_through_coercion(m, __method__)
- end
-
- Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size
-
- rows = Array.new(row_size) {|i|
- Array.new(column_size) {|j|
- self[i, j] - m[i, j]
- }
- }
- new_matrix rows, column_size
- end
-
- #
- # Matrix division (multiplication by the inverse).
- # Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
- # => -7 1
- # -3 -6
- #
- def /(other)
- case other
- when Numeric
- rows = @rows.collect {|row|
- row.collect {|e| e / other }
- }
- return new_matrix rows, column_size
- when Matrix
- return self * other.inverse
- else
- return apply_through_coercion(other, __method__)
- end
- end
-
- #
- # Returns the inverse of the matrix.
- # Matrix[[-1, -1], [0, -1]].inverse
- # => -1 1
- # 0 -1
- #
- def inverse
- Matrix.Raise ErrDimensionMismatch unless square?
- Matrix.I(row_size).send(:inverse_from, self)
- end
- alias inv inverse
-
- def inverse_from(src) # :nodoc:
- last = row_size - 1
- a = src.to_a
-
- 0.upto(last) do |k|
- i = k
- akk = a[k][k].abs
- (k+1).upto(last) do |j|
- v = a[j][k].abs
- if v > akk
- i = j
- akk = v
- end
- end
- Matrix.Raise ErrNotRegular if akk == 0
- if i != k
- a[i], a[k] = a[k], a[i]
- @rows[i], @rows[k] = @rows[k], @rows[i]
- end
- akk = a[k][k]
-
- 0.upto(last) do |ii|
- next if ii == k
- q = a[ii][k].quo(akk)
- a[ii][k] = 0
-
- (k + 1).upto(last) do |j|
- a[ii][j] -= a[k][j] * q
- end
- 0.upto(last) do |j|
- @rows[ii][j] -= @rows[k][j] * q
- end
- end
-
- (k+1).upto(last) do |j|
- a[k][j] = a[k][j].quo(akk)
- end
- 0.upto(last) do |j|
- @rows[k][j] = @rows[k][j].quo(akk)
- end
- end
- self
- end
- private :inverse_from
-
- #
- # Matrix exponentiation.
- # Equivalent to multiplying the matrix by itself N times.
- # Non integer exponents will be handled by diagonalizing the matrix.
- #
- # Matrix[[7,6], [3,9]] ** 2
- # => 67 96
- # 48 99
- #
- def ** (other)
- case other
- when Integer
- x = self
- if other <= 0
- x = self.inverse
- return Matrix.identity(self.column_size) if other == 0
- other = -other
- end
- z = nil
- loop do
- z = z ? z * x : x if other[0] == 1
- return z if (other >>= 1).zero?
- x *= x
- end
- when Numeric
- v, d, v_inv = eigensystem
- v * Matrix.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv
- else
- Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class
- end
- end
-
- #--
- # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Returns the determinant of the matrix.
- #
- # Beware that using Float values can yield erroneous results
- # because of their lack of precision.
- # Consider using exact types like Rational or BigDecimal instead.
- #
- # Matrix[[7,6], [3,9]].determinant
- # => 45
- #
- def determinant
- Matrix.Raise ErrDimensionMismatch unless square?
- m = @rows
- case row_size
- # Up to 4x4, give result using Laplacian expansion by minors.
- # This will typically be faster, as well as giving good results
- # in case of Floats
- when 0
- +1
- when 1
- + m[0][0]
- when 2
- + m[0][0] * m[1][1] - m[0][1] * m[1][0]
- when 3
- m0, m1, m2 = m
- + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
- - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
- + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
- when 4
- m0, m1, m2, m3 = m
- + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
- - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
- + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
- - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
- + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
- - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
- + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
- - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
- + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
- - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
- + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
- - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
- else
- # For bigger matrices, use an efficient and general algorithm.
- # Currently, we use the Gauss-Bareiss algorithm
- determinant_bareiss
- end
- end
- alias_method :det, :determinant
-
- #
- # Private. Use Matrix#determinant
- #
- # Returns the determinant of the matrix, using
- # Bareiss' multistep integer-preserving gaussian elimination.
- # It has the same computational cost order O(n^3) as standard Gaussian elimination.
- # Intermediate results are fraction free and of lower complexity.
- # A matrix of Integers will have thus intermediate results that are also Integers,
- # with smaller bignums (if any), while a matrix of Float will usually have
- # intermediate results with better precision.
- #
- def determinant_bareiss
- size = row_size
- last = size - 1
- a = to_a
- no_pivot = Proc.new{ return 0 }
- sign = +1
- pivot = 1
- size.times do |k|
- previous_pivot = pivot
- if (pivot = a[k][k]) == 0
- switch = (k+1 ... size).find(no_pivot) {|row|
- a[row][k] != 0
- }
- a[switch], a[k] = a[k], a[switch]
- pivot = a[k][k]
- sign = -sign
- end
- (k+1).upto(last) do |i|
- ai = a[i]
- (k+1).upto(last) do |j|
- ai[j] = (pivot * ai[j] - ai[k] * a[k][j]) / previous_pivot
- end
- end
- end
- sign * pivot
- end
- private :determinant_bareiss
-
- #
- # deprecated; use Matrix#determinant
- #
- def determinant_e
- warn "#{caller(1)[0]}: warning: Matrix#determinant_e is deprecated; use #determinant"
- rank
- end
- alias det_e determinant_e
-
- #
- # Returns the rank of the matrix.
- # Beware that using Float values can yield erroneous results
- # because of their lack of precision.
- # Consider using exact types like Rational or BigDecimal instead.
- #
- # Matrix[[7,6], [3,9]].rank
- # => 2
- #
- def rank
- # We currently use Bareiss' multistep integer-preserving gaussian elimination
- # (see comments on determinant)
- a = to_a
- last_column = column_size - 1
- last_row = row_size - 1
- pivot_row = 0
- previous_pivot = 1
- 0.upto(last_column) do |k|
- switch_row = (pivot_row .. last_row).find {|row|
- a[row][k] != 0
- }
- if switch_row
- a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
- pivot = a[pivot_row][k]
- (pivot_row+1).upto(last_row) do |i|
- ai = a[i]
- (k+1).upto(last_column) do |j|
- ai[j] = (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
- end
- end
- pivot_row += 1
- previous_pivot = pivot
- end
- end
- pivot_row
- end
-
- #
- # deprecated; use Matrix#rank
- #
- def rank_e
- warn "#{caller(1)[0]}: warning: Matrix#rank_e is deprecated; use #rank"
- rank
- end
-
- # Returns a matrix with entries rounded to the given precision
- # (see Float#round)
- #
- def round(ndigits=0)
- map{|e| e.round(ndigits)}
- end
-
- #
- # Returns the trace (sum of diagonal elements) of the matrix.
- # Matrix[[7,6], [3,9]].trace
- # => 16
- #
- def trace
- Matrix.Raise ErrDimensionMismatch unless square?
- (0...column_size).inject(0) do |tr, i|
- tr + @rows[i][i]
- end
- end
- alias tr trace
-
- #
- # Returns the transpose of the matrix.
- # Matrix[[1,2], [3,4], [5,6]]
- # => 1 2
- # 3 4
- # 5 6
- # Matrix[[1,2], [3,4], [5,6]].transpose
- # => 1 3 5
- # 2 4 6
- #
- def transpose
- return Matrix.empty(column_size, 0) if row_size.zero?
- new_matrix @rows.transpose, row_size
- end
- alias t transpose
-
- #--
- # DECOMPOSITIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
- #++
-
- #
- # Returns the Eigensystem of the matrix; see +EigenvalueDecomposition+.
- # m = Matrix[[1, 2], [3, 4]]
- # v, d, v_inv = m.eigensystem
- # d.diagonal? # => true
- # v.inv == v_inv # => true
- # (v * d * v_inv).round(5) == m # => true
- #
- def eigensystem
- EigenvalueDecomposition.new(self)
- end
- alias eigen eigensystem
-
- #
- # Returns the LUP decomposition of the matrix; see +LUPDecomposition+.
- # a = Matrix[[1, 2], [3, 4]]
- # l, u, p = a.lup
- # l.lower_triangular? # => true
- # u.upper_triangular? # => true
- # p.permutation? # => true
- # l * u == a * p # => true
- # a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
- #
- def lup
- LUPDecomposition.new(self)
- end
- alias lup_decomposition lup
-
- #--
- # COMPLEX ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
- #++
-
- #
- # Returns the conjugate of the matrix.
- # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
- # => 1+2i i 0
- # 1 2 3
- # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
- # => 1-2i -i 0
- # 1 2 3
- #
- def conjugate
- collect(&:conjugate)
- end
- alias conj conjugate
-
- #
- # Returns the imaginary part of the matrix.
- # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
- # => 1+2i i 0
- # 1 2 3
- # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
- # => 2i i 0
- # 0 0 0
- #
- def imaginary
- collect(&:imaginary)
- end
- alias imag imaginary
-
- #
- # Returns the real part of the matrix.
- # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
- # => 1+2i i 0
- # 1 2 3
- # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
- # => 1 0 0
- # 1 2 3
- #
- def real
- collect(&:real)
- end
-
- #
- # Returns an array containing matrices corresponding to the real and imaginary
- # parts of the matrix
- #
- # m.rect == [m.real, m.imag] # ==> true for all matrices m
- #
- def rect
- [real, imag]
- end
- alias rectangular rect
-
- #--
- # CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # The coerce method provides support for Ruby type coercion.
- # This coercion mechanism is used by Ruby to handle mixed-type
- # numeric operations: it is intended to find a compatible common
- # type between the two operands of the operator.
- # See also Numeric#coerce.
- #
- def coerce(other)
- case other
- when Numeric
- return Scalar.new(other), self
- else
- raise TypeError, "#{self.class} can't be coerced into #{other.class}"
- end
- end
-
- #
- # Returns an array of the row vectors of the matrix. See Vector.
- #
- def row_vectors
- Array.new(row_size) {|i|
- row(i)
- }
- end
-
- #
- # Returns an array of the column vectors of the matrix. See Vector.
- #
- def column_vectors
- Array.new(column_size) {|i|
- column(i)
- }
- end
-
- #
- # Returns an array of arrays that describe the rows of the matrix.
- #
- def to_a
- @rows.collect(&:dup)
- end
-
- def elements_to_f
- warn "#{caller(1)[0]}: warning: Matrix#elements_to_f is deprecated, use map(&:to_f)"
- map(&:to_f)
- end
-
- def elements_to_i
- warn "#{caller(1)[0]}: warning: Matrix#elements_to_i is deprecated, use map(&:to_i)"
- map(&:to_i)
- end
-
- def elements_to_r
- warn "#{caller(1)[0]}: warning: Matrix#elements_to_r is deprecated, use map(&:to_r)"
- map(&:to_r)
- end
-
- #--
- # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Overrides Object#to_s
- #
- def to_s
- if empty?
- "Matrix.empty(#{row_size}, #{column_size})"
- else
- "Matrix[" + @rows.collect{|row|
- "[" + row.collect{|e| e.to_s}.join(", ") + "]"
- }.join(", ")+"]"
- end
- end
-
- #
- # Overrides Object#inspect
- #
- def inspect
- if empty?
- "Matrix.empty(#{row_size}, #{column_size})"
- else
- "Matrix#{@rows.inspect}"
- end
- end
-
- # Private helper modules
-
- module ConversionHelper # :nodoc:
- #
- # Converts the obj to an Array. If copy is set to true
- # a copy of obj will be made if necessary.
- #
- def convert_to_array(obj, copy = false) # :nodoc:
- case obj
- when Array
- copy ? obj.dup : obj
- when Vector
- obj.to_a
- else
- begin
- converted = obj.to_ary
- rescue Exception => e
- raise TypeError, "can't convert #{obj.class} into an Array (#{e.message})"
- end
- raise TypeError, "#{obj.class}#to_ary should return an Array" unless converted.is_a? Array
- converted
- end
- end
- private :convert_to_array
- end
-
- extend ConversionHelper
-
- module CoercionHelper # :nodoc:
- #
- # Applies the operator +oper+ with argument +obj+
- # through coercion of +obj+
- #
- def apply_through_coercion(obj, oper)
- coercion = obj.coerce(self)
- raise TypeError unless coercion.is_a?(Array) && coercion.length == 2
- coercion[0].public_send(oper, coercion[1])
- rescue
- raise TypeError, "#{obj.inspect} can't be coerced into #{self.class}"
- end
- private :apply_through_coercion
-
- #
- # Helper method to coerce a value into a specific class.
- # Raises a TypeError if the coercion fails or the returned value
- # is not of the right class.
- # (from Rubinius)
- #
- def self.coerce_to(obj, cls, meth) # :nodoc:
- return obj if obj.kind_of?(cls)
-
- begin
- ret = obj.__send__(meth)
- rescue Exception => e
- raise TypeError, "Coercion error: #{obj.inspect}.#{meth} => #{cls} failed:\n" \
- "(#{e.message})"
- end
- raise TypeError, "Coercion error: obj.#{meth} did NOT return a #{cls} (was #{ret.class})" unless ret.kind_of? cls
- ret
- end
-
- def self.coerce_to_int(obj)
- coerce_to(obj, Integer, :to_int)
- end
- end
-
- include CoercionHelper
-
- # Private CLASS
-
- class Scalar < Numeric # :nodoc:
- include ExceptionForMatrix
- include CoercionHelper
-
- def initialize(value)
- @value = value
- end
-
- # ARITHMETIC
- def +(other)
- case other
- when Numeric
- Scalar.new(@value + other)
- when Vector, Matrix
- Scalar.Raise ErrOperationNotDefined, "+", @value.class, other.class
- else
- apply_through_coercion(other, __method__)
- end
- end
-
- def -(other)
- case other
- when Numeric
- Scalar.new(@value - other)
- when Vector, Matrix
- Scalar.Raise ErrOperationNotDefined, "-", @value.class, other.class
- else
- apply_through_coercion(other, __method__)
- end
- end
-
- def *(other)
- case other
- when Numeric
- Scalar.new(@value * other)
- when Vector, Matrix
- other.collect{|e| @value * e}
- else
- apply_through_coercion(other, __method__)
- end
- end
-
- def / (other)
- case other
- when Numeric
- Scalar.new(@value / other)
- when Vector
- Scalar.Raise ErrOperationNotDefined, "/", @value.class, other.class
- when Matrix
- self * other.inverse
- else
- apply_through_coercion(other, __method__)
- end
- end
-
- def ** (other)
- case other
- when Numeric
- Scalar.new(@value ** other)
- when Vector
- Scalar.Raise ErrOperationNotDefined, "**", @value.class, other.class
- when Matrix
- #other.powered_by(self)
- Scalar.Raise ErrOperationNotImplemented, "**", @value.class, other.class
- else
- apply_through_coercion(other, __method__)
- end
- end
- end
-
-end
-
-
-#
-# The +Vector+ class represents a mathematical vector, which is useful in its own right, and
-# also constitutes a row or column of a Matrix.
-#
-# == Method Catalogue
-#
-# To create a Vector:
-# * <tt> Vector.[](*array) </tt>
-# * <tt> Vector.elements(array, copy = true) </tt>
-#
-# To access elements:
-# * <tt> [](i) </tt>
-#
-# To enumerate the elements:
-# * <tt> #each2(v) </tt>
-# * <tt> #collect2(v) </tt>
-#
-# Vector arithmetic:
-# * <tt> *(x) "is matrix or number" </tt>
-# * <tt> +(v) </tt>
-# * <tt> -(v) </tt>
-#
-# Vector functions:
-# * <tt> #inner_product(v) </tt>
-# * <tt> #collect </tt>
-# * <tt> #magnitude </tt>
-# * <tt> #map </tt>
-# * <tt> #map2(v) </tt>
-# * <tt> #norm </tt>
-# * <tt> #normalize </tt>
-# * <tt> #r </tt>
-# * <tt> #size </tt>
-#
-# Conversion to other data types:
-# * <tt> #covector </tt>
-# * <tt> #to_a </tt>
-# * <tt> #coerce(other) </tt>
-#
-# String representations:
-# * <tt> #to_s </tt>
-# * <tt> #inspect </tt>
-#
-class Vector
- include ExceptionForMatrix
- include Enumerable
- include Matrix::CoercionHelper
- extend Matrix::ConversionHelper
- #INSTANCE CREATION
-
- private_class_method :new
- attr_reader :elements
- protected :elements
-
- #
- # Creates a Vector from a list of elements.
- # Vector[7, 4, ...]
- #
- def Vector.[](*array)
- new convert_to_array(array, false)
- end
-
- #
- # Creates a vector from an Array. The optional second argument specifies
- # whether the array itself or a copy is used internally.
- #
- def Vector.elements(array, copy = true)
- new convert_to_array(array, copy)
- end
-
- #
- # Vector.new is private; use Vector[] or Vector.elements to create.
- #
- def initialize(array)
- # No checking is done at this point.
- @elements = array
- end
-
- # ACCESSING
-
- #
- # Returns element number +i+ (starting at zero) of the vector.
- #
- def [](i)
- @elements[i]
- end
- alias element []
- alias component []
-
- def []=(i, v)
- @elements[i]= v
- end
- alias set_element []=
- alias set_component []=
- private :[]=, :set_element, :set_component
-
- #
- # Returns the number of elements in the vector.
- #
- def size
- @elements.size
- end
-
- #--
- # ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Iterate over the elements of this vector
- #
- def each(&block)
- return to_enum(:each) unless block_given?
- @elements.each(&block)
- self
- end
-
- #
- # Iterate over the elements of this vector and +v+ in conjunction.
- #
- def each2(v) # :yield: e1, e2
- raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
- Vector.Raise ErrDimensionMismatch if size != v.size
- return to_enum(:each2, v) unless block_given?
- size.times do |i|
- yield @elements[i], v[i]
- end
- self
- end
-
- #
- # Collects (as in Enumerable#collect) over the elements of this vector and +v+
- # in conjunction.
- #
- def collect2(v) # :yield: e1, e2
- raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
- Vector.Raise ErrDimensionMismatch if size != v.size
- return to_enum(:collect2, v) unless block_given?
- Array.new(size) do |i|
- yield @elements[i], v[i]
- end
- end
-
- #--
- # COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Returns +true+ iff the two vectors have the same elements in the same order.
- #
- def ==(other)
- return false unless Vector === other
- @elements == other.elements
- end
-
- def eql?(other)
- return false unless Vector === other
- @elements.eql? other.elements
- end
-
- #
- # Return a copy of the vector.
- #
- def clone
- Vector.elements(@elements)
- end
-
- #
- # Return a hash-code for the vector.
- #
- def hash
- @elements.hash
- end
-
- #--
- # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Multiplies the vector by +x+, where +x+ is a number or another vector.
- #
- def *(x)
- case x
- when Numeric
- els = @elements.collect{|e| e * x}
- Vector.elements(els, false)
- when Matrix
- Matrix.column_vector(self) * x
- when Vector
- Vector.Raise ErrOperationNotDefined, "*", self.class, x.class
- else
- apply_through_coercion(x, __method__)
- end
- end
-
- #
- # Vector addition.
- #
- def +(v)
- case v
- when Vector
- Vector.Raise ErrDimensionMismatch if size != v.size
- els = collect2(v) {|v1, v2|
- v1 + v2
- }
- Vector.elements(els, false)
- when Matrix
- Matrix.column_vector(self) + v
- else
- apply_through_coercion(v, __method__)
- end
- end
-
- #
- # Vector subtraction.
- #
- def -(v)
- case v
- when Vector
- Vector.Raise ErrDimensionMismatch if size != v.size
- els = collect2(v) {|v1, v2|
- v1 - v2
- }
- Vector.elements(els, false)
- when Matrix
- Matrix.column_vector(self) - v
- else
- apply_through_coercion(v, __method__)
- end
- end
-
- #
- # Vector division.
- #
- def /(x)
- case x
- when Numeric
- els = @elements.collect{|e| e / x}
- Vector.elements(els, false)
- when Matrix, Vector
- Vector.Raise ErrOperationNotDefined, "/", self.class, x.class
- else
- apply_through_coercion(x, __method__)
- end
- end
-
- #--
- # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Returns the inner product of this vector with the other.
- # Vector[4,7].inner_product Vector[10,1] => 47
- #
- def inner_product(v)
- Vector.Raise ErrDimensionMismatch if size != v.size
-
- p = 0
- each2(v) {|v1, v2|
- p += v1 * v2
- }
- p
- end
-
- #
- # Like Array#collect.
- #
- def collect(&block) # :yield: e
- return to_enum(:collect) unless block_given?
- els = @elements.collect(&block)
- Vector.elements(els, false)
- end
- alias map collect
-
- #
- # Returns the modulus (Pythagorean distance) of the vector.
- # Vector[5,8,2].r => 9.643650761
- #
- def magnitude
- Math.sqrt(@elements.inject(0) {|v, e| v + e*e})
- end
- alias r magnitude
- alias norm magnitude
-
- #
- # Like Vector#collect2, but returns a Vector instead of an Array.
- #
- def map2(v, &block) # :yield: e1, e2
- return to_enum(:map2, v) unless block_given?
- els = collect2(v, &block)
- Vector.elements(els, false)
- end
-
- class ZeroVectorError < StandardError
- end
- #
- # Returns a new vector with the same direction but with norm 1.
- # v = Vector[5,8,2].normalize
- # # => Vector[0.5184758473652127, 0.8295613557843402, 0.20739033894608505]
- # v.norm => 1.0
- #
- def normalize
- n = magnitude
- raise ZeroVectorError, "Zero vectors can not be normalized" if n == 0
- self / n
- end
-
- #--
- # CONVERTING
- #++
-
- #
- # Creates a single-row matrix from this vector.
- #
- def covector
- Matrix.row_vector(self)
- end
-
- #
- # Returns the elements of the vector in an array.
- #
- def to_a
- @elements.dup
- end
-
- def elements_to_f
- warn "#{caller(1)[0]}: warning: Vector#elements_to_f is deprecated"
- map(&:to_f)
- end
-
- def elements_to_i
- warn "#{caller(1)[0]}: warning: Vector#elements_to_i is deprecated"
- map(&:to_i)
- end
-
- def elements_to_r
- warn "#{caller(1)[0]}: warning: Vector#elements_to_r is deprecated"
- map(&:to_r)
- end
-
- #
- # The coerce method provides support for Ruby type coercion.
- # This coercion mechanism is used by Ruby to handle mixed-type
- # numeric operations: it is intended to find a compatible common
- # type between the two operands of the operator.
- # See also Numeric#coerce.
- #
- def coerce(other)
- case other
- when Numeric
- return Matrix::Scalar.new(other), self
- else
- raise TypeError, "#{self.class} can't be coerced into #{other.class}"
- end
- end
-
- #--
- # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
- #++
-
- #
- # Overrides Object#to_s
- #
- def to_s
- "Vector[" + @elements.join(", ") + "]"
- end
-
- #
- # Overrides Object#inspect
- #
- def inspect
- "Vector" + @elements.inspect
- end
-end