summaryrefslogtreecommitdiff
path: root/ruby_1_8_5/lib/rational.rb
diff options
context:
space:
mode:
Diffstat (limited to 'ruby_1_8_5/lib/rational.rb')
-rw-r--r--ruby_1_8_5/lib/rational.rb530
1 files changed, 530 insertions, 0 deletions
diff --git a/ruby_1_8_5/lib/rational.rb b/ruby_1_8_5/lib/rational.rb
new file mode 100644
index 0000000000..ce754cfa3c
--- /dev/null
+++ b/ruby_1_8_5/lib/rational.rb
@@ -0,0 +1,530 @@
+#
+# rational.rb -
+# $Release Version: 0.5 $
+# $Revision: 1.7 $
+# $Date: 1999/08/24 12:49:28 $
+# by Keiju ISHITSUKA(SHL Japan Inc.)
+#
+# Documentation by Kevin Jackson and Gavin Sinclair.
+#
+# When you <tt>require 'rational'</tt>, all interactions between numbers
+# potentially return a rational result. For example:
+#
+# 1.quo(2) # -> 0.5
+# require 'rational'
+# 1.quo(2) # -> Rational(1,2)
+#
+# See Rational for full documentation.
+#
+
+
+#
+# Creates a Rational number (i.e. a fraction). +a+ and +b+ should be Integers:
+#
+# Rational(1,3) # -> 1/3
+#
+# Note: trying to construct a Rational with floating point or real values
+# produces errors:
+#
+# Rational(1.1, 2.3) # -> NoMethodError
+#
+def Rational(a, b = 1)
+ if a.kind_of?(Rational) && b == 1
+ a
+ else
+ Rational.reduce(a, b)
+ end
+end
+
+#
+# Rational implements a rational class for numbers.
+#
+# <em>A rational number is a number that can be expressed as a fraction p/q
+# where p and q are integers and q != 0. A rational number p/q is said to have
+# numerator p and denominator q. Numbers that are not rational are called
+# irrational numbers.</em> (http://mathworld.wolfram.com/RationalNumber.html)
+#
+# To create a Rational Number:
+# Rational(a,b) # -> a/b
+# Rational.new!(a,b) # -> a/b
+#
+# Examples:
+# Rational(5,6) # -> 5/6
+# Rational(5) # -> 5/1
+#
+# Rational numbers are reduced to their lowest terms:
+# Rational(6,10) # -> 3/5
+#
+# But not if you use the unusual method "new!":
+# Rational.new!(6,10) # -> 6/10
+#
+# Division by zero is obviously not allowed:
+# Rational(3,0) # -> ZeroDivisionError
+#
+class Rational < Numeric
+ @RCS_ID='-$Id: rational.rb,v 1.7 1999/08/24 12:49:28 keiju Exp keiju $-'
+
+ #
+ # Reduces the given numerator and denominator to their lowest terms. Use
+ # Rational() instead.
+ #
+ def Rational.reduce(num, den = 1)
+ raise ZeroDivisionError, "denominator is zero" if den == 0
+
+ if den < 0
+ num = -num
+ den = -den
+ end
+ gcd = num.gcd(den)
+ num = num.div(gcd)
+ den = den.div(gcd)
+ if den == 1 && defined?(Unify)
+ num
+ else
+ new!(num, den)
+ end
+ end
+
+ #
+ # Implements the constructor. This method does not reduce to lowest terms or
+ # check for division by zero. Therefore #Rational() should be preferred in
+ # normal use.
+ #
+ def Rational.new!(num, den = 1)
+ new(num, den)
+ end
+
+ private_class_method :new
+
+ #
+ # This method is actually private.
+ #
+ def initialize(num, den)
+ if den < 0
+ num = -num
+ den = -den
+ end
+ if num.kind_of?(Integer) and den.kind_of?(Integer)
+ @numerator = num
+ @denominator = den
+ else
+ @numerator = num.to_i
+ @denominator = den.to_i
+ end
+ end
+
+ #
+ # Returns the addition of this value and +a+.
+ #
+ # Examples:
+ # r = Rational(3,4) # -> Rational(3,4)
+ # r + 1 # -> Rational(7,4)
+ # r + 0.5 # -> 1.25
+ #
+ def + (a)
+ if a.kind_of?(Rational)
+ num = @numerator * a.denominator
+ num_a = a.numerator * @denominator
+ Rational(num + num_a, @denominator * a.denominator)
+ elsif a.kind_of?(Integer)
+ self + Rational.new!(a, 1)
+ elsif a.kind_of?(Float)
+ Float(self) + a
+ else
+ x, y = a.coerce(self)
+ x + y
+ end
+ end
+
+ #
+ # Returns the difference of this value and +a+.
+ # subtracted.
+ #
+ # Examples:
+ # r = Rational(3,4) # -> Rational(3,4)
+ # r - 1 # -> Rational(-1,4)
+ # r - 0.5 # -> 0.25
+ #
+ def - (a)
+ if a.kind_of?(Rational)
+ num = @numerator * a.denominator
+ num_a = a.numerator * @denominator
+ Rational(num - num_a, @denominator*a.denominator)
+ elsif a.kind_of?(Integer)
+ self - Rational.new!(a, 1)
+ elsif a.kind_of?(Float)
+ Float(self) - a
+ else
+ x, y = a.coerce(self)
+ x - y
+ end
+ end
+
+ #
+ # Returns the product of this value and +a+.
+ #
+ # Examples:
+ # r = Rational(3,4) # -> Rational(3,4)
+ # r * 2 # -> Rational(3,2)
+ # r * 4 # -> Rational(3,1)
+ # r * 0.5 # -> 0.375
+ # r * Rational(1,2) # -> Rational(3,8)
+ #
+ def * (a)
+ if a.kind_of?(Rational)
+ num = @numerator * a.numerator
+ den = @denominator * a.denominator
+ Rational(num, den)
+ elsif a.kind_of?(Integer)
+ self * Rational.new!(a, 1)
+ elsif a.kind_of?(Float)
+ Float(self) * a
+ else
+ x, y = a.coerce(self)
+ x * y
+ end
+ end
+
+ #
+ # Returns the quotient of this value and +a+.
+ # r = Rational(3,4) # -> Rational(3,4)
+ # r / 2 # -> Rational(3,8)
+ # r / 2.0 # -> 0.375
+ # r / Rational(1,2) # -> Rational(3,2)
+ #
+ def / (a)
+ if a.kind_of?(Rational)
+ num = @numerator * a.denominator
+ den = @denominator * a.numerator
+ Rational(num, den)
+ elsif a.kind_of?(Integer)
+ raise ZeroDivisionError, "division by zero" if a == 0
+ self / Rational.new!(a, 1)
+ elsif a.kind_of?(Float)
+ Float(self) / a
+ else
+ x, y = a.coerce(self)
+ x / y
+ end
+ end
+
+ #
+ # Returns this value raised to the given power.
+ #
+ # Examples:
+ # r = Rational(3,4) # -> Rational(3,4)
+ # r ** 2 # -> Rational(9,16)
+ # r ** 2.0 # -> 0.5625
+ # r ** Rational(1,2) # -> 0.866025403784439
+ #
+ def ** (other)
+ if other.kind_of?(Rational)
+ Float(self) ** other
+ elsif other.kind_of?(Integer)
+ if other > 0
+ num = @numerator ** other
+ den = @denominator ** other
+ elsif other < 0
+ num = @denominator ** -other
+ den = @numerator ** -other
+ elsif other == 0
+ num = 1
+ den = 1
+ end
+ Rational.new!(num, den)
+ elsif other.kind_of?(Float)
+ Float(self) ** other
+ else
+ x, y = other.coerce(self)
+ x ** y
+ end
+ end
+
+ #
+ # Returns the remainder when this value is divided by +other+.
+ #
+ # Examples:
+ # r = Rational(7,4) # -> Rational(7,4)
+ # r % Rational(1,2) # -> Rational(1,4)
+ # r % 1 # -> Rational(3,4)
+ # r % Rational(1,7) # -> Rational(1,28)
+ # r % 0.26 # -> 0.19
+ #
+ def % (other)
+ value = (self / other).to_i
+ return self - other * value
+ end
+
+ #
+ # Returns the quotient _and_ remainder.
+ #
+ # Examples:
+ # r = Rational(7,4) # -> Rational(7,4)
+ # r.divmod Rational(1,2) # -> [3, Rational(1,4)]
+ #
+ def divmod(other)
+ value = (self / other).to_i
+ return value, self - other * value
+ end
+
+ #
+ # Returns the absolute value.
+ #
+ def abs
+ if @numerator > 0
+ Rational.new!(@numerator, @denominator)
+ else
+ Rational.new!(-@numerator, @denominator)
+ end
+ end
+
+ #
+ # Returns +true+ iff this value is numerically equal to +other+.
+ #
+ # But beware:
+ # Rational(1,2) == Rational(4,8) # -> true
+ # Rational(1,2) == Rational.new!(4,8) # -> false
+ #
+ # Don't use Rational.new!
+ #
+ def == (other)
+ if other.kind_of?(Rational)
+ @numerator == other.numerator and @denominator == other.denominator
+ elsif other.kind_of?(Integer)
+ self == Rational.new!(other, 1)
+ elsif other.kind_of?(Float)
+ Float(self) == other
+ else
+ other == self
+ end
+ end
+
+ #
+ # Standard comparison operator.
+ #
+ def <=> (other)
+ if other.kind_of?(Rational)
+ num = @numerator * other.denominator
+ num_a = other.numerator * @denominator
+ v = num - num_a
+ if v > 0
+ return 1
+ elsif v < 0
+ return -1
+ else
+ return 0
+ end
+ elsif other.kind_of?(Integer)
+ return self <=> Rational.new!(other, 1)
+ elsif other.kind_of?(Float)
+ return Float(self) <=> other
+ elsif defined? other.coerce
+ x, y = other.coerce(self)
+ return x <=> y
+ else
+ return nil
+ end
+ end
+
+ def coerce(other)
+ if other.kind_of?(Float)
+ return other, self.to_f
+ elsif other.kind_of?(Integer)
+ return Rational.new!(other, 1), self
+ else
+ super
+ end
+ end
+
+ #
+ # Converts the rational to an Integer. Not the _nearest_ integer, the
+ # truncated integer. Study the following example carefully:
+ # Rational(+7,4).to_i # -> 1
+ # Rational(-7,4).to_i # -> -2
+ # (-1.75).to_i # -> -1
+ #
+ # In other words:
+ # Rational(-7,4) == -1.75 # -> true
+ # Rational(-7,4).to_i == (-1.75).to_i # false
+ #
+ def to_i
+ Integer(@numerator.div(@denominator))
+ end
+
+ #
+ # Converts the rational to a Float.
+ #
+ def to_f
+ @numerator.to_f/@denominator.to_f
+ end
+
+ #
+ # Returns a string representation of the rational number.
+ #
+ # Example:
+ # Rational(3,4).to_s # "3/4"
+ # Rational(8).to_s # "8"
+ #
+ def to_s
+ if @denominator == 1
+ @numerator.to_s
+ else
+ @numerator.to_s+"/"+@denominator.to_s
+ end
+ end
+
+ #
+ # Returns +self+.
+ #
+ def to_r
+ self
+ end
+
+ #
+ # Returns a reconstructable string representation:
+ #
+ # Rational(5,8).inspect # -> "Rational(5, 8)"
+ #
+ def inspect
+ sprintf("Rational(%s, %s)", @numerator.inspect, @denominator.inspect)
+ end
+
+ #
+ # Returns a hash code for the object.
+ #
+ def hash
+ @numerator.hash ^ @denominator.hash
+ end
+
+ attr :numerator
+ attr :denominator
+
+ private :initialize
+end
+
+class Integer
+ #
+ # In an integer, the value _is_ the numerator of its rational equivalent.
+ # Therefore, this method returns +self+.
+ #
+ def numerator
+ self
+ end
+
+ #
+ # In an integer, the denominator is 1. Therefore, this method returns 1.
+ #
+ def denominator
+ 1
+ end
+
+ #
+ # Returns a Rational representation of this integer.
+ #
+ def to_r
+ Rational(self, 1)
+ end
+
+ #
+ # Returns the <em>greatest common denominator</em> of the two numbers (+self+
+ # and +n+).
+ #
+ # Examples:
+ # 72.gcd 168 # -> 24
+ # 19.gcd 36 # -> 1
+ #
+ # The result is positive, no matter the sign of the arguments.
+ #
+ def gcd(other)
+ min = self.abs
+ max = other.abs
+ while min > 0
+ tmp = min
+ min = max % min
+ max = tmp
+ end
+ max
+ end
+
+ #
+ # Returns the <em>lowest common multiple</em> (LCM) of the two arguments
+ # (+self+ and +other+).
+ #
+ # Examples:
+ # 6.lcm 7 # -> 42
+ # 6.lcm 9 # -> 18
+ #
+ def lcm(other)
+ if self.zero? or other.zero?
+ 0
+ else
+ (self.div(self.gcd(other)) * other).abs
+ end
+ end
+
+ #
+ # Returns the GCD _and_ the LCM (see #gcd and #lcm) of the two arguments
+ # (+self+ and +other+). This is more efficient than calculating them
+ # separately.
+ #
+ # Example:
+ # 6.gcdlcm 9 # -> [3, 18]
+ #
+ def gcdlcm(other)
+ gcd = self.gcd(other)
+ if self.zero? or other.zero?
+ [gcd, 0]
+ else
+ [gcd, (self.div(gcd) * other).abs]
+ end
+ end
+end
+
+class Fixnum
+ undef quo
+ # If Rational is defined, returns a Rational number instead of a Fixnum.
+ def quo(other)
+ Rational.new!(self,1) / other
+ end
+ alias rdiv quo
+
+ # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
+ def rpower (other)
+ if other >= 0
+ self.power!(other)
+ else
+ Rational.new!(self,1)**other
+ end
+ end
+
+ unless defined? 1.power!
+ alias power! **
+ alias ** rpower
+ end
+end
+
+class Bignum
+ unless defined? Complex
+ alias power! **
+ end
+
+ undef quo
+ # If Rational is defined, returns a Rational number instead of a Bignum.
+ def quo(other)
+ Rational.new!(self,1) / other
+ end
+ alias rdiv quo
+
+ # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
+ def rpower (other)
+ if other >= 0
+ self.power!(other)
+ else
+ Rational.new!(self, 1)**other
+ end
+ end
+
+ unless defined? Complex
+ alias ** rpower
+ end
+end