summaryrefslogtreecommitdiff
path: root/ruby_1_8_5/lib/mathn.rb
diff options
context:
space:
mode:
Diffstat (limited to 'ruby_1_8_5/lib/mathn.rb')
-rw-r--r--ruby_1_8_5/lib/mathn.rb308
1 files changed, 0 insertions, 308 deletions
diff --git a/ruby_1_8_5/lib/mathn.rb b/ruby_1_8_5/lib/mathn.rb
deleted file mode 100644
index a5a121c6c6..0000000000
--- a/ruby_1_8_5/lib/mathn.rb
+++ /dev/null
@@ -1,308 +0,0 @@
-#
-# mathn.rb -
-# $Release Version: 0.5 $
-# $Revision: 1.1.1.1.4.1 $
-# $Date: 1998/01/16 12:36:05 $
-# by Keiju ISHITSUKA(SHL Japan Inc.)
-#
-# --
-#
-#
-#
-
-require "complex.rb"
-require "rational.rb"
-require "matrix.rb"
-
-class Integer
-
- def gcd2(int)
- a = self.abs
- b = int.abs
- a, b = b, a if a < b
-
- pd_a = a.prime_division
- pd_b = b.prime_division
-
- gcd = 1
- for pair in pd_a
- as = pd_b.assoc(pair[0])
- if as
- gcd *= as[0] ** [as[1], pair[1]].min
- end
- end
- return gcd
- end
-
- def Integer.from_prime_division(pd)
- value = 1
- for prime, index in pd
- value *= prime**index
- end
- value
- end
-
- def prime_division
- raise ZeroDivisionError if self == 0
- ps = Prime.new
- value = self
- pv = []
- for prime in ps
- count = 0
- while (value1, mod = value.divmod(prime)
- mod) == 0
- value = value1
- count += 1
- end
- if count != 0
- pv.push [prime, count]
- end
- break if prime * prime >= value
- end
- if value > 1
- pv.push [value, 1]
- end
- return pv
- end
-end
-
-class Prime
- include Enumerable
-
- def initialize
- @seed = 1
- @primes = []
- @counts = []
- end
-
- def succ
- i = -1
- size = @primes.size
- while i < size
- if i == -1
- @seed += 1
- i += 1
- else
- while @seed > @counts[i]
- @counts[i] += @primes[i]
- end
- if @seed != @counts[i]
- i += 1
- else
- i = -1
- end
- end
- end
- @primes.push @seed
- @counts.push @seed + @seed
- return @seed
- end
- alias next succ
-
- def each
- loop do
- yield succ
- end
- end
-end
-
-class Fixnum
- alias / quo
-end
-
-class Bignum
- alias / quo
-end
-
-class Rational
- Unify = true
-
- def inspect
- format "%s/%s", numerator.inspect, denominator.inspect
- end
-
- alias power! **
-
- def ** (other)
- if other.kind_of?(Rational)
- other2 = other
- if self < 0
- return Complex.new!(self, 0) ** other
- elsif other == 0
- return Rational(1,1)
- elsif self == 0
- return Rational(0,1)
- elsif self == 1
- return Rational(1,1)
- end
-
- npd = numerator.prime_division
- dpd = denominator.prime_division
- if other < 0
- other = -other
- npd, dpd = dpd, npd
- end
-
- for elm in npd
- elm[1] = elm[1] * other
- if !elm[1].kind_of?(Integer) and elm[1].denominator != 1
- return Float(self) ** other2
- end
- elm[1] = elm[1].to_i
- end
-
- for elm in dpd
- elm[1] = elm[1] * other
- if !elm[1].kind_of?(Integer) and elm[1].denominator != 1
- return Float(self) ** other2
- end
- elm[1] = elm[1].to_i
- end
-
- num = Integer.from_prime_division(npd)
- den = Integer.from_prime_division(dpd)
-
- Rational(num,den)
-
- elsif other.kind_of?(Integer)
- if other > 0
- num = numerator ** other
- den = denominator ** other
- elsif other < 0
- num = denominator ** -other
- den = numerator ** -other
- elsif other == 0
- num = 1
- den = 1
- end
- Rational.new!(num, den)
- elsif other.kind_of?(Float)
- Float(self) ** other
- else
- x , y = other.coerce(self)
- x ** y
- end
- end
-
- def power2(other)
- if other.kind_of?(Rational)
- if self < 0
- return Complex(self, 0) ** other
- elsif other == 0
- return Rational(1,1)
- elsif self == 0
- return Rational(0,1)
- elsif self == 1
- return Rational(1,1)
- end
-
- dem = nil
- x = self.denominator.to_f.to_i
- neard = self.denominator.to_f ** (1.0/other.denominator.to_f)
- loop do
- if (neard**other.denominator == self.denominator)
- dem = neaed
- break
- end
- end
- nearn = self.numerator.to_f ** (1.0/other.denominator.to_f)
- Rational(num,den)
-
- elsif other.kind_of?(Integer)
- if other > 0
- num = numerator ** other
- den = denominator ** other
- elsif other < 0
- num = denominator ** -other
- den = numerator ** -other
- elsif other == 0
- num = 1
- den = 1
- end
- Rational.new!(num, den)
- elsif other.kind_of?(Float)
- Float(self) ** other
- else
- x , y = other.coerce(self)
- x ** y
- end
- end
-end
-
-module Math
- def sqrt(a)
- if a.kind_of?(Complex)
- abs = sqrt(a.real*a.real + a.image*a.image)
-# if not abs.kind_of?(Rational)
-# return a**Rational(1,2)
-# end
- x = sqrt((a.real + abs)/Rational(2))
- y = sqrt((-a.real + abs)/Rational(2))
-# if !(x.kind_of?(Rational) and y.kind_of?(Rational))
-# return a**Rational(1,2)
-# end
- if a.image >= 0
- Complex(x, y)
- else
- Complex(x, -y)
- end
- elsif a >= 0
- rsqrt(a)
- else
- Complex(0,rsqrt(-a))
- end
- end
-
- def rsqrt(a)
- if a.kind_of?(Float)
- sqrt!(a)
- elsif a.kind_of?(Rational)
- rsqrt(a.numerator)/rsqrt(a.denominator)
- else
- src = a
- max = 2 ** 32
- byte_a = [src & 0xffffffff]
- # ruby's bug
- while (src >= max) and (src >>= 32)
- byte_a.unshift src & 0xffffffff
- end
-
- answer = 0
- main = 0
- side = 0
- for elm in byte_a
- main = (main << 32) + elm
- side <<= 16
- if answer != 0
- if main * 4 < side * side
- applo = main.div(side)
- else
- applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1
- end
- else
- applo = sqrt!(main).to_i + 1
- end
-
- while (x = (side + applo) * applo) > main
- applo -= 1
- end
- main -= x
- answer = (answer << 16) + applo
- side += applo * 2
- end
- if main == 0
- answer
- else
- sqrt!(a)
- end
- end
- end
-
- module_function :sqrt
- module_function :rsqrt
-end
-
-class Complex
- Unify = true
-end
-