summaryrefslogtreecommitdiff
path: root/ruby_1_8_5/README.EXT
diff options
context:
space:
mode:
Diffstat (limited to 'ruby_1_8_5/README.EXT')
-rw-r--r--ruby_1_8_5/README.EXT1133
1 files changed, 0 insertions, 1133 deletions
diff --git a/ruby_1_8_5/README.EXT b/ruby_1_8_5/README.EXT
deleted file mode 100644
index e5d39911ca..0000000000
--- a/ruby_1_8_5/README.EXT
+++ /dev/null
@@ -1,1133 +0,0 @@
-.\" README.EXT - -*- Text -*- created at: Mon Aug 7 16:45:54 JST 1995
-
-This document explains how to make extension libraries for Ruby.
-
-1. Basic knowledge
-
-In C, variables have types and data do not have types. In contrast,
-Ruby variables do not have a static type, and data themselves have
-types, so data will need to be converted between the languages.
-
-Data in Ruby are represented by C type `VALUE'. Each VALUE data has
-its data-type.
-
-To retrieve C data from a VALUE, you need to:
-
- (1) Identify the VALUE's data type
- (2) Convert the VALUE into C data
-
-Converting to the wrong data type may cause serious problems.
-
-
-1.1 Data-types
-
-The Ruby interpreter has the following data types:
-
- T_NIL nil
- T_OBJECT ordinary object
- T_CLASS class
- T_MODULE module
- T_FLOAT floating point number
- T_STRING string
- T_REGEXP regular expression
- T_ARRAY array
- T_FIXNUM Fixnum(31bit integer)
- T_HASH associative array
- T_STRUCT (Ruby) structure
- T_BIGNUM multi precision integer
- T_FILE IO
- T_TRUE true
- T_FALSE false
- T_DATA data
- T_SYMBOL symbol
-
-In addition, there are several other types used internally:
-
- T_ICLASS
- T_MATCH
- T_UNDEF
- T_VARMAP
- T_SCOPE
- T_NODE
-
-Most of the types are represented by C structures.
-
-1.2 Check Data Type of the VALUE
-
-The macro TYPE() defined in ruby.h shows the data type of the VALUE.
-TYPE() returns the constant number T_XXXX described above. To handle
-data types, your code will look something like this:
-
- switch (TYPE(obj)) {
- case T_FIXNUM:
- /* process Fixnum */
- break;
- case T_STRING:
- /* process String */
- break;
- case T_ARRAY:
- /* process Array */
- break;
- default:
- /* raise exception */
- rb_raise(rb_eTypeError, "not valid value");
- break;
- }
-
-There is the data-type check function
-
- void Check_Type(VALUE value, int type)
-
-which raises an exception if the VALUE does not have the type specified.
-
-There are also faster check macros for fixnums and nil.
-
- FIXNUM_P(obj)
- NIL_P(obj)
-
-1.3 Convert VALUE into C data
-
-The data for type T_NIL, T_FALSE, T_TRUE are nil, true, false
-respectively. They are singletons for the data type.
-
-The T_FIXNUM data is a 31bit length fixed integer (63bit length on
-some machines), which can be convert to a C integer by using the
-FIX2INT() macro. There is also NUM2INT() which converts any Ruby
-numbers into C integers. The NUM2INT() macro includes a type check, so
-an exception will be raised if the conversion failed. NUM2DBL() can
-be used to retrieve the double float value in same way.
-
-To get char* from a VALUE, version 1.7 recommend to use new macros
-StringValue() and StringValuePtr(). StringValue(var) replaces var's
-value to the result of "var.to_str()". StringValuePtr(var) does same
-replacement and returns char* representation of var. These macros
-will skip the replacement if var is a String. Notice that the macros
-requires to take only lvalue as their argument, to change the value
-of var in the replacement.
-
-In version 1.6 or earlier, STR2CSTR() was used to do same thing
-but now it is obsoleted in version 1.7 because of STR2CSTR() has
-a risk of dangling pointer problem in to_str() impliclit conversion.
-
-Other data types have corresponding C structures, e.g. struct RArray
-for T_ARRAY etc. The VALUE of the type which has corresponding structure
-can be cast to retrieve the pointer to the struct. The casting macro
-will be of the form RXXXX for each data type; for instance, RARRAY(obj).
-See "ruby.h".
-
-For example, `RSTRING(str)->len' is the way to get the size of the
-Ruby String object. The allocated region can be accessed by
-`RSTRING(str)->ptr'. For arrays, use `RARRAY(ary)->len' and
-`RARRAY(ary)->ptr' respectively.
-
-Notice: Do not change the value of the structure directly, unless you
-are responsible for the result. This ends up being the cause of interesting
-bugs.
-
-1.4 Convert C data into VALUE
-
-To convert C data to Ruby values:
-
- * FIXNUM
-
- left shift 1 bit, and turn on LSB.
-
- * Other pointer values
-
- cast to VALUE.
-
-You can determine whether a VALUE is pointer or not by checking its LSB.
-
-Notice Ruby does not allow arbitrary pointer values to be a VALUE. They
-should be pointers to the structures which Ruby knows about. The known
-structures are defined in <ruby.h>.
-
-To convert C numbers to Ruby values, use these macros.
-
- INT2FIX() for integers within 31bits.
- INT2NUM() for arbitrary sized integer.
-
-INT2NUM() converts an integer into a Bignum if it is out of the FIXNUM
-range, but is a bit slower.
-
-1.5 Manipulating Ruby data
-
-As I already mentioned, it is not recommended to modify an object's internal
-structure. To manipulate objects, use the functions supplied by the Ruby
-interpreter. Some (not all) of the useful functions are listed below:
-
- String functions
-
- rb_str_new(const char *ptr, long len)
-
- Creates a new Ruby string.
-
- rb_str_new2(const char *ptr)
-
- Creates a new Ruby string from a C string. This is equivalent to
- rb_str_new(ptr, strlen(ptr)).
-
- rb_tainted_str_new(const char *ptr, long len)
-
- Creates a new tainted Ruby string. Strings from external data
- sources should be tainted.
-
- rb_tainted_str_new2(const char *ptr)
-
- Creates a new tainted Ruby string from a C string.
-
- rb_str_cat(VALUE str, const char *ptr, long len)
-
- Appends len bytes of data from ptr to the Ruby string.
-
- Array functions
-
- rb_ary_new()
-
- Creates an array with no elements.
-
- rb_ary_new2(long len)
-
- Creates an array with no elements, allocating internal buffer
- for len elements.
-
- rb_ary_new3(long n, ...)
-
- Creates an n-element array from the arguments.
-
- rb_ary_new4(long n, VALUE *elts)
-
- Creates an n-element array from a C array.
-
- rb_ary_push(VALUE ary, VALUE val)
- rb_ary_pop(VALUE ary)
- rb_ary_shift(VALUE ary)
- rb_ary_unshift(VALUE ary, VALUE val)
-
- Array operations. The first argument to each functions must be an
- array. They may dump core if other types given.
-
-2. Extending Ruby with C
-
-2.1 Addding new features to Ruby
-
-You can add new features (classes, methods, etc.) to the Ruby
-interpreter. Ruby provides APIs for defining the following things:
-
- * Classes, Modules
- * Methods, Singleton Methods
- * Constants
-
-2.1.1 Class/module definition
-
-To define a class or module, use the functions below:
-
- VALUE rb_define_class(const char *name, VALUE super)
- VALUE rb_define_module(const char *name)
-
-These functions return the newly created class or module. You may
-want to save this reference into a variable to use later.
-
-To define nested classes or modules, use the functions below:
-
- VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super)
- VALUE rb_define_module_under(VALUE outer, const char *name)
-
-2.1.2 Method/singleton method definition
-
-To define methods or singleton methods, use these functions:
-
- void rb_define_method(VALUE klass, const char *name,
- VALUE (*func)(), int argc)
-
- void rb_define_singleton_method(VALUE object, const char *name,
- VALUE (*func)(), int argc)
-
-The `argc' represents the number of the arguments to the C function,
-which must be less than 17. But I believe you don't need that much. :-)
-
-If `argc' is negative, it specifies the calling sequence, not number of
-the arguments.
-
-If argc is -1, the function will be called as:
-
- VALUE func(int argc, VALUE *argv, VALUE obj)
-
-where argc is the actual number of arguments, argv is the C array of
-the arguments, and obj is the receiver.
-
-If argc is -2, the arguments are passed in a Ruby array. The function
-will be called like:
-
- VALUE func(VALUE obj, VALUE args)
-
-where obj is the receiver, and args is the Ruby array containing
-actual arguments.
-
-There are two more functions to define methods. One is to define
-private methods:
-
- void rb_define_private_method(VALUE klass, const char *name,
- VALUE (*func)(), int argc)
-
-The other is to define module functions, which are private AND singleton
-methods of the module. For example, sqrt is the module function
-defined in Math module. It can be call in the form like:
-
- Math.sqrt(4)
-
-or
-
- include Math
- sqrt(4)
-
-To define module functions, use:
-
- void rb_define_module_function(VALUE module, const char *name,
- VALUE (*func)(), int argc)
-
-Oh, in addition, function-like methods, which are private methods defined
-in the Kernel module, can be defined using:
-
- void rb_define_global_function(const char *name, VALUE (*func)(), int argc)
-
-To define alias to the method,
-
- void rb_define_alias(VALUE module, const char* new, const char* old);
-
-To define and undefine the `allocate' class method,
-
- void rb_define_alloc_func(VALUE klass, VALUE (*func)(VALUE klass));
- void rb_undef_alloc_func(VALUE klass);
-
-func have to take the klass as the argument and return a newly
-allocated instance. This instance should be empty as possible,
-without any expensive (including external) resources.
-
-2.1.3 Constant definition
-
-We have 2 functions to define constants:
-
- void rb_define_const(VALUE klass, const char *name, VALUE val)
- void rb_define_global_const(const char *name, VALUE val)
-
-The former is to define a constant under specified class/module. The
-latter is to define a global constant.
-
-2.2 Use Ruby features from C
-
-There are several ways to invoke Ruby's features from C code.
-
-2.2.1 Evaluate Ruby Programs in a String
-
-The easiest way to use Ruby's functionality from a C program is to
-evaluate the string as Ruby program. This function will do the job.
-
- VALUE rb_eval_string(const char *str)
-
-Evaluation is done under the current context, thus current local variables
-of the innermost method (which is defined by Ruby) can be accessed.
-
-2.2.2 ID or Symbol
-
-You can invoke methods directly, without parsing the string. First I need
-to explain about ID. ID is the integer number to represent Ruby's
-identifiers such as variable names. The Ruby data type corresponding to ID
-is Symbol. It can be accessed from Ruby in the form:
-
- :Identifier
-
-You can get the ID value from a string within C code by using
-
- rb_intern(const char *name)
-
-You can retrieve ID from Ruby object (Symbol or String) given as an
-argument by using
-
- rb_to_id(VALUE symbol)
-
-You can convert C ID to Ruby Symbol by using
-
- VALUE ID2SYM(ID id)
-
-and to convert Ruby Symbol object to ID, use
-
- ID SYM2ID(VALUE symbol)
-
-2.2.3 Invoke Ruby method from C
-
-To invoke methods directly, you can use the function below
-
- VALUE rb_funcall(VALUE recv, ID mid, int argc, ...)
-
-This function invokes a method on the recv, with the method name
-specified by the symbol mid.
-
-2.2.4 Accessing the variables and constants
-
-You can access class variables and instance variables using access
-functions. Also, global variables can be shared between both environments.
-There's no way to access Ruby's local variables.
-
-The functions to access/modify instance variables are below:
-
- VALUE rb_ivar_get(VALUE obj, ID id)
- VALUE rb_ivar_set(VALUE obj, ID id, VALUE val)
-
-id must be the symbol, which can be retrieved by rb_intern().
-
-To access the constants of the class/module:
-
- VALUE rb_const_get(VALUE obj, ID id)
-
-See 2.1.3 for defining new constant.
-
-3. Information sharing between Ruby and C
-
-3.1 Ruby constants that C can be accessed from C
-
-The following Ruby constants can be referred from C.
-
- Qtrue
- Qfalse
-
-Boolean values. Qfalse is false in C also (i.e. 0).
-
- Qnil
-
-Ruby nil in C scope.
-
-3.2 Global variables shared between C and Ruby
-
-Information can be shared between the two environments using shared global
-variables. To define them, you can use functions listed below:
-
- void rb_define_variable(const char *name, VALUE *var)
-
-This function defines the variable which is shared by both environments.
-The value of the global variable pointed to by `var' can be accessed
-through Ruby's global variable named `name'.
-
-You can define read-only (from Ruby, of course) variables using the
-function below.
-
- void rb_define_readonly_variable(const char *name, VALUE *var)
-
-You can defined hooked variables. The accessor functions (getter and
-setter) are called on access to the hooked variables.
-
- void rb_define_hooked_variable(constchar *name, VALUE *var,
- VALUE (*getter)(), void (*setter)())
-
-If you need to supply either setter or getter, just supply 0 for the
-hook you don't need. If both hooks are 0, rb_define_hooked_variable()
-works just like rb_define_variable().
-
- void rb_define_virtual_variable(const char *name,
- VALUE (*getter)(), void (*setter)())
-
-This function defines a Ruby global variable without a corresponding C
-variable. The value of the variable will be set/get only by hooks.
-
-The prototypes of the getter and setter functions are as follows:
-
- (*getter)(ID id, void *data, struct global_entry* entry);
- (*setter)(VALUE val, ID id, void *data, struct global_entry* entry);
-
-3.3 Encapsulate C data into Ruby object
-
-To wrap and objectify a C pointer as a Ruby object (so called
-DATA), use Data_Wrap_Struct().
-
- Data_Wrap_Struct(klass, mark, free, ptr)
-
-Data_Wrap_Struct() returns a created DATA object. The klass argument
-is the class for the DATA object. The mark argument is the function
-to mark Ruby objects pointed by this data. The free argument is the
-function to free the pointer allocation. If this is -1, the pointer
-will be just freed. The functions mark and free will be called from
-garbage collector.
-
-You can allocate and wrap the structure in one step.
-
- Data_Make_Struct(klass, type, mark, free, sval)
-
-This macro returns an allocated Data object, wrapping the pointer to
-the structure, which is also allocated. This macro works like:
-
- (sval = ALLOC(type), Data_Wrap_Struct(klass, mark, free, sval))
-
-Arguments klass, mark, and free work like their counterparts in
-Data_Wrap_Struct(). A pointer to the allocated structure will be
-assigned to sval, which should be a pointer of the type specified.
-
-To retrieve the C pointer from the Data object, use the macro
-Data_Get_Struct().
-
- Data_Get_Struct(obj, type, sval)
-
-A pointer to the structure will be assigned to the variable sval.
-
-See the example below for details.
-
-4. Example - Creating dbm extension
-
-OK, here's the example of making an extension library. This is the
-extension to access DBMs. The full source is included in the ext/
-directory in the Ruby's source tree.
-
-(1) make the directory
-
- % mkdir ext/dbm
-
-Make a directory for the extension library under ext directory.
-
-(2) design the library
-
-You need to design the library features, before making it.
-
-(3) write C code.
-
-You need to write C code for your extension library. If your library
-has only one source file, choosing ``LIBRARY.c'' as a file name is
-preferred. On the other hand, in case your library has multiple source
-files, avoid choosing ``LIBRARY.c'' for a file name. It may conflict
-with an intermediate file ``LIBRARY.o'' on some platforms.
-
-Ruby will execute the initializing function named ``Init_LIBRARY'' in
-the library. For example, ``Init_dbm()'' will be executed when loading
-the library.
-
-Here's the example of an initializing function.
-
---
-Init_dbm()
-{
- /* define DBM class */
- cDBM = rb_define_class("DBM", rb_cObject);
- /* DBM includes Enumerate module */
- rb_include_module(cDBM, rb_mEnumerable);
-
- /* DBM has class method open(): arguments are received as C array */
- rb_define_singleton_method(cDBM, "open", fdbm_s_open, -1);
-
- /* DBM instance method close(): no args */
- rb_define_method(cDBM, "close", fdbm_close, 0);
- /* DBM instance method []: 1 argument */
- rb_define_method(cDBM, "[]", fdbm_fetch, 1);
- :
-
- /* ID for a instance variable to store DBM data */
- id_dbm = rb_intern("dbm");
-}
---
-
-The dbm extension wraps the dbm struct in the C environment using
-Data_Make_Struct.
-
---
-struct dbmdata {
- int di_size;
- DBM *di_dbm;
-};
-
-
-obj = Data_Make_Struct(klass, struct dbmdata, 0, free_dbm, dbmp);
---
-
-This code wraps the dbmdata structure into a Ruby object. We avoid wrapping
-DBM* directly, because we want to cache size information.
-
-To retrieve the dbmdata structure from a Ruby object, we define the
-following macro:
-
---
-#define GetDBM(obj, dbmp) {\
- Data_Get_Struct(obj, struct dbmdata, dbmp);\
- if (dbmp->di_dbm == 0) closed_dbm();\
-}
---
-
-This sort of complicated macro does the retrieving and close checking for
-the DBM.
-
-There are three kinds of way to receive method arguments. First,
-methods with a fixed number of arguments receive arguments like this:
-
---
-static VALUE
-fdbm_delete(obj, keystr)
- VALUE obj, keystr;
-{
- :
-}
---
-
-The first argument of the C function is the self, the rest are the
-arguments to the method.
-
-Second, methods with an arbitrary number of arguments receive
-arguments like this:
-
---
-static VALUE
-fdbm_s_open(argc, argv, klass)
- int argc;
- VALUE *argv;
- VALUE klass;
-{
- :
- if (rb_scan_args(argc, argv, "11", &file, &vmode) == 1) {
- mode = 0666; /* default value */
- }
- :
-}
---
-
-The first argument is the number of method arguments, the second
-argument is the C array of the method arguments, and the third
-argument is the receiver of the method.
-
-You can use the function rb_scan_args() to check and retrieve the
-arguments. For example, "11" means that the method requires at least one
-argument, and at most receives two arguments.
-
-Methods with an arbitrary number of arguments can receive arguments
-by Ruby's array, like this:
-
---
-static VALUE
-fdbm_indexes(obj, args)
- VALUE obj, args;
-{
- :
-}
---
-
-The first argument is the receiver, the second one is the Ruby array
-which contains the arguments to the method.
-
-** Notice
-
-GC should know about global variables which refer to Ruby's objects, but
-are not exported to the Ruby world. You need to protect them by
-
- void rb_global_variable(VALUE *var)
-
-(4) prepare extconf.rb
-
-If the file named extconf.rb exists, it will be executed to generate
-Makefile.
-
-extconf.rb is the file for check compilation conditions etc. You
-need to put
-
- require 'mkmf'
-
-at the top of the file. You can use the functions below to check
-various conditions.
-
- have_library(lib, func): check whether library containing function exists.
- have_func(func, header): check whether function exists
- have_header(header): check whether header file exists
- create_makefile(target): generate Makefile
-
-The value of the variables below will affect the Makefile.
-
- $CFLAGS: included in CFLAGS make variable (such as -O)
- $CPPFLAGS: included in CPPFLAGS make variable (such as -I, -D)
- $LDFLAGS: included in LDFLAGS make variable (such as -L)
- $objs: list of object file names
-
-In normal, object files list is automatically generated by searching
-source files, but you need directs them explicitly if any sources will
-be generated while building.
-
-If a compilation condition is not fulfilled, you should not call
-``create_makefile''. The Makefile will not generated, compilation will
-not be done.
-
-(5) prepare depend (optional)
-
-If the file named depend exists, Makefile will include that file to
-check dependencies. You can make this file by invoking
-
- % gcc -MM *.c > depend
-
-It's no harm. Prepare it.
-
-(6) generate Makefile
-
-Try generating the Makefile by:
-
- ruby extconf.rb
-
-You don't need this step if you put the extension library under the ext
-directory of the ruby source tree. In that case, compilation of the
-interpreter will do this step for you.
-
-(7) make
-
-Type
-
- make
-
-to compile your extension. You don't need this step either if you have
-put extension library under the ext directory of the ruby source tree.
-
-(8) debug
-
-You may need to rb_debug the extension. Extensions can be linked
-statically by the adding directory name in the ext/Setup file so that
-you can inspect the extension with the debugger.
-
-(9) done, now you have the extension library
-
-You can do anything you want with your library. The author of Ruby
-will not claim any restrictions on your code depending on the Ruby API.
-Feel free to use, modify, distribute or sell your program.
-
-Appendix A. Ruby source files overview
-
-ruby language core
-
- class.c
- error.c
- eval.c
- gc.c
- object.c
- parse.y
- variable.c
-
-utility functions
-
- dln.c
- regex.c
- st.c
- util.c
-
-ruby interpreter implementation
-
- dmyext.c
- inits.c
- main.c
- ruby.c
- version.c
-
-class library
-
- array.c
- bignum.c
- compar.c
- dir.c
- enum.c
- file.c
- hash.c
- io.c
- marshal.c
- math.c
- numeric.c
- pack.c
- prec.c
- process.c
- random.c
- range.c
- re.c
- signal.c
- sprintf.c
- string.c
- struct.c
- time.c
-
-Appendix B. Ruby extension API reference
-
-** Types
-
- VALUE
-
-The type for the Ruby object. Actual structures are defined in ruby.h,
-such as struct RString, etc. To refer the values in structures, use
-casting macros like RSTRING(obj).
-
-** Variables and constants
-
- Qnil
-
-const: nil object
-
- Qtrue
-
-const: true object(default true value)
-
- Qfalse
-
-const: false object
-
-** C pointer wrapping
-
- Data_Wrap_Struct(VALUE klass, void (*mark)(), void (*free)(), void *sval)
-
-Wrap a C pointer into a Ruby object. If object has references to other
-Ruby objects, they should be marked by using the mark function during
-the GC process. Otherwise, mark should be 0. When this object is no
-longer referred by anywhere, the pointer will be discarded by free
-function.
-
- Data_Make_Struct(klass, type, mark, free, sval)
-
-This macro allocates memory using malloc(), assigns it to the variable
-sval, and returns the DATA encapsulating the pointer to memory region.
-
- Data_Get_Struct(data, type, sval)
-
-This macro retrieves the pointer value from DATA, and assigns it to
-the variable sval.
-
-** Checking data types
-
-TYPE(value)
-FIXNUM_P(value)
-NIL_P(value)
-void Check_Type(VALUE value, int type)
-void Check_SafeStr(VALUE value)
-
-** Data type conversion
-
-FIX2INT(value)
-INT2FIX(i)
-NUM2INT(value)
-INT2NUM(i)
-NUM2DBL(value)
-rb_float_new(f)
-StringValue(value)
-StringValuePtr(value)
-StringValueCStr(value)
-rb_str_new2(s)
-
-** defining class/module
-
- VALUE rb_define_class(const char *name, VALUE super)
-
-Defines a new Ruby class as a subclass of super.
-
- VALUE rb_define_class_under(VALUE module, const char *name, VALUE super)
-
-Creates a new Ruby class as a subclass of super, under the module's
-namespace.
-
- VALUE rb_define_module(const char *name)
-
-Defines a new Ruby module.
-
- VALUE rb_define_module_under(VALUE module, const char *name)
-
-Defines a new Ruby module under the module's namespace.
-
- void rb_include_module(VALUE klass, VALUE module)
-
-Includes module into class. If class already includes it, just
-ignored.
-
- void rb_extend_object(VALUE object, VALUE module)
-
-Extend the object with the module's attributes.
-
-** Defining Global Variables
-
- void rb_define_variable(const char *name, VALUE *var)
-
-Defines a global variable which is shared between C and Ruby. If name
-contains a character which is not allowed to be part of the symbol,
-it can't be seen from Ruby programs.
-
- void rb_define_readonly_variable(const char *name, VALUE *var)
-
-Defines a read-only global variable. Works just like
-rb_define_variable(), except defined variable is read-only.
-
- void rb_define_virtual_variable(const char *name,
- VALUE (*getter)(), VALUE (*setter)())
-
-Defines a virtual variable, whose behavior is defined by a pair of C
-functions. The getter function is called when the variable is
-referred. The setter function is called when the value is set to the
-variable. The prototype for getter/setter functions are:
-
- VALUE getter(ID id)
- void setter(VALUE val, ID id)
-
-The getter function must return the value for the access.
-
- void rb_define_hooked_variable(const char *name, VALUE *var,
- VALUE (*getter)(), VALUE (*setter)())
-
-Defines hooked variable. It's a virtual variable with a C variable.
-The getter is called as
-
- VALUE getter(ID id, VALUE *var)
-
-returning a new value. The setter is called as
-
- void setter(VALUE val, ID id, VALUE *var)
-
-GC requires C global variables which hold Ruby values to be marked.
-
- void rb_global_variable(VALUE *var)
-
-Tells GC to protect these variables.
-
-** Constant Definition
-
- void rb_define_const(VALUE klass, const char *name, VALUE val)
-
-Defines a new constant under the class/module.
-
- void rb_define_global_const(const char *name, VALUE val)
-
-Defines a global constant. This is just the same as
-
- rb_define_const(cKernal, name, val)
-
-** Method Definition
-
- rb_define_method(VALUE klass, const char *name, VALUE (*func)(), int argc)
-
-Defines a method for the class. func is the function pointer. argc
-is the number of arguments. if argc is -1, the function will receive
-3 arguments: argc, argv, and self. if argc is -2, the function will
-receive 2 arguments, self and args, where args is a Ruby array of
-the method arguments.
-
- rb_define_private_method(VALUE klass, const char *name, VALUE (*func)(), int argc)
-
-Defines a private method for the class. Arguments are same as
-rb_define_method().
-
- rb_define_singleton_method(VALUE klass, const char *name, VALUE (*func)(), int argc)
-
-Defines a singleton method. Arguments are same as rb_define_method().
-
- rb_scan_args(int argc, VALUE *argv, const char *fmt, ...)
-
-Retrieve argument from argc, argv. The fmt is the format string for
-the arguments, such as "12" for 1 non-optional argument, 2 optional
-arguments. If `*' appears at the end of fmt, it means the rest of
-the arguments are assigned to the corresponding variable, packed in
-an array.
-
-** Invoking Ruby method
-
- VALUE rb_funcall(VALUE recv, ID mid, int narg, ...)
-
-Invokes a method. To retrieve mid from a method name, use rb_intern().
-
- VALUE rb_funcall2(VALUE recv, ID mid, int argc, VALUE *argv)
-
-Invokes a method, passing arguments by an array of values.
-
- VALUE rb_eval_string(const char *str)
-
-Compiles and executes the string as a Ruby program.
-
- ID rb_intern(const char *name)
-
-Returns ID corresponding to the name.
-
- char *rb_id2name(ID id)
-
-Returns the name corresponding ID.
-
- char *rb_class2name(VALUE klass)
-
-Returns the name of the class.
-
- int rb_respond_to(VALUE object, ID id)
-
-Returns true if the object responds to the message specified by id.
-
-** Instance Variables
-
- VALUE rb_iv_get(VALUE obj, const char *name)
-
-Retrieve the value of the instance variable. If the name is not
-prefixed by `@', that variable shall be inaccessible from Ruby.
-
- VALUE rb_iv_set(VALUE obj, const char *name, VALUE val)
-
-Sets the value of the instance variable.
-
-** Control Structure
-
- VALUE rb_iterate(VALUE (*func1)(), void *arg1, VALUE (*func2)(), void *arg2)
-
-Calls the function func1, supplying func2 as the block. func1 will be
-called with the argument arg1. func2 receives the value from yield as
-the first argument, arg2 as the second argument.
-
- VALUE rb_yield(VALUE val)
-
-Evaluates the block with value val.
-
- VALUE rb_rescue(VALUE (*func1)(), void *arg1, VALUE (*func2)(), void *arg2)
-
-Calls the function func1, with arg1 as the argument. If an exception
-occurs during func1, it calls func2 with arg2 as the argument. The
-return value of rb_rescue() is the return value from func1 if no
-exception occurs, from func2 otherwise.
-
- VALUE rb_ensure(VALUE (*func1)(), void *arg1, void (*func2)(), void *arg2)
-
-Calls the function func1 with arg1 as the argument, then calls func2
-with arg2 if execution terminated. The return value from
-rb_ensure() is that of func1.
-
-** Exceptions and Errors
-
- void rb_warn(const char *fmt, ...)
-
-Prints a warning message according to a printf-like format.
-
- void rb_warning(const char *fmt, ...)
-
-Prints a warning message according to a printf-like format, if
-$VERBOSE is true.
-
-void rb_raise(rb_eRuntimeError, const char *fmt, ...)
-
-Raises RuntimeError. The fmt is a format string just like printf().
-
- void rb_raise(VALUE exception, const char *fmt, ...)
-
-Raises a class exception. The fmt is a format string just like printf().
-
- void rb_fatal(const char *fmt, ...)
-
-Raises a fatal error, terminates the interpreter. No exception handling
-will be done for fatal errors, but ensure blocks will be executed.
-
- void rb_bug(const char *fmt, ...)
-
-Terminates the interpreter immediately. This function should be
-called under the situation caused by the bug in the interpreter. No
-exception handling nor ensure execution will be done.
-
-** Initialize and Starts the Interpreter
-
-The embedding API functions are below (not needed for extension libraries):
-
- void ruby_init()
-
-Initializes the interpreter.
-
- void ruby_options(int argc, char **argv)
-
-Process command line arguments for the interpreter.
-
- void ruby_run()
-
-Starts execution of the interpreter.
-
- void ruby_script(char *name)
-
-Specifies the name of the script ($0).
-
-Appendix C. Functions Available in extconf.rb
-
-These functions are available in extconf.rb:
-
- have_macro(macro, headers)
-
-Checks whether macro is defined with header. Returns true if the macro
-is defined.
-
- have_library(lib, func)
-
-Checks whether the library exists, containing the specified function.
-Returns true if the library exists.
-
- find_library(lib, func, path...)
-
-Checks whether a library which contains the specified function exists in
-path. Returns true if the library exists.
-
- have_func(func, header)
-
-Checks whether func exists with header. Returns true if the function
-exists. To check functions in an additional library, you need to
-check that library first using have_library().
-
- have_var(var, header)
-
-Checks whether var exists with header. Returns true if the variable
-exists. To check variables in an additional library, you need to
-check that library first using have_library().
-
- have_header(header)
-
-Checks whether header exists. Returns true if the header file exists.
-
- find_header(header, path...)
-
-Checks whether header exists in path. Returns true if the header file
-exists.
-
- have_struct_member(type, member, header)
-
-Checks whether type has member with header. Returns true if the type
-is defined and has the member.
-
- have_type(type, header, opt)
-
-Checks whether type is defined with header. Returns true if the type
-is defined.
-
- check_sizeof(type, header)
-
-Checks the size of type in char with header. Returns the size if the
-type is defined, otherwise nil.
-
- create_makefile(target)
-
-Generates the Makefile for the extension library. If you don't invoke
-this method, the compilation will not be done.
-
- find_executable(bin, path)
-
-Finds command in path, which is File::PATH_SEPARATOR-separated list of
-directories. If path is nil or omitted, environment varialbe PATH
-will be used. Returns the path name of the command if it is found,
-otherwise nil.
-
- with_config(withval[, default=nil])
-
-Parses the command line options and returns the value specified by
---with-<withval>.
-
- enable_config(config, *defaults)
- disable_config(config, *defaults)
-
-Parses the command line options for boolean. Returns true if
---enable-<config> is given, or false if --disable-<config> is given.
-Otherwise, yields defaults to the given block and returns the result
-if it is called with a block, or returns defaults.
-
- dir_config(target[, default_dir])
- dir_config(target[, default_include, default_lib])
-
-Parses the command line options and adds the directories specified by
---with-<target>-dir, --with-<target>-include, and/or --with-<target>-lib
-to $CFLAGS and/or $LDFLAGS. --with-<target>-dir=/path is equivalent to
---with-<target>-include=/path/include --with-<target>-lib=/path/lib.
-Returns an array of the added directories ([include_dir, lib_dir]).
-
- pkg_config(pkg)
-
-Obtains the information of pkg by pkg-config command. The actual
-command name can be overriden by --with-pkg-config command line
-option.
-
-/*
- * Local variables:
- * fill-column: 70
- * end:
- */