summaryrefslogtreecommitdiff
path: root/regex.c
diff options
context:
space:
mode:
Diffstat (limited to 'regex.c')
-rw-r--r--regex.c2807
1 files changed, 2807 insertions, 0 deletions
diff --git a/regex.c b/regex.c
new file mode 100644
index 0000000000..686695cbe2
--- /dev/null
+++ b/regex.c
@@ -0,0 +1,2807 @@
+/* Extended regular expression matching and search library.
+ Copyright (C) 1985, 1989-90 Free Software Foundation, Inc.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 1, or (at your option)
+ any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
+/* Multi-byte extension added May, 1993 by t^2 (Takahiro Tanimoto)
+ Last change: May 21, 1993 by t^2 */
+
+
+/* To test, compile with -Dtest. This Dtestable feature turns this into
+ a self-contained program which reads a pattern, describes how it
+ compiles, then reads a string and searches for it.
+
+ On the other hand, if you compile with both -Dtest and -Dcanned you
+ can run some tests we've already thought of. */
+
+/* We write fatal error messages on standard error. */
+#include <stdio.h>
+
+/* isalpha(3) etc. are used for the character classes. */
+#include <ctype.h>
+#include <sys/types.h>
+
+#include "config.h"
+#include "defines.h"
+
+#ifdef __STDC__
+#define P(s) s
+#define MALLOC_ARG_T size_t
+#else
+#define P(s) ()
+#define MALLOC_ARG_T unsigned
+#define volatile
+#define const
+#endif
+
+/* #define NO_ALLOCA /* try it out for now */
+#ifndef NO_ALLOCA
+/* Make alloca work the best possible way. */
+#ifdef __GNUC__
+#ifndef atarist
+#ifndef alloca
+#define alloca __builtin_alloca
+#endif
+#endif /* atarist */
+#else
+#if defined(HAVE_ALLOCA_H) && !defined(__GNUC__)
+#include <alloca.h>
+#else
+char *alloca();
+#endif
+#endif /* __GNUC__ */
+
+#ifdef _AIX
+#pragma alloca
+#endif
+
+#define RE_ALLOCATE alloca
+#define FREE_VARIABLES() alloca(0)
+
+#define FREE_AND_RETURN_VOID(stackb) return
+#define FREE_AND_RETURN(stackb,val) return(val)
+#define DOUBLE_STACK(stackx,stackb,len) \
+ (stackx = (unsigned char **) alloca(2 * len \
+ * sizeof(unsigned char *)),\
+ /* Only copy what is in use. */ \
+ (unsigned char **) memcpy(stackx, stackb, len * sizeof (char *)))
+#else /* NO_ALLOCA defined */
+
+#define RE_ALLOCATE malloc
+
+#define FREE_VAR(var) if (var) free(var); var = NULL
+#define FREE_VARIABLES() \
+ do { \
+ FREE_VAR(regstart); \
+ FREE_VAR(regend); \
+ FREE_VAR(best_regstart); \
+ FREE_VAR(best_regend); \
+ FREE_VAR(reg_info); \
+ } while (0)
+
+#define FREE_AND_RETURN_VOID(stackb) free(stackb);return
+#define FREE_AND_RETURN(stackb,val) free(stackb);return(val)
+#define DOUBLE_STACK(stackx,stackb,len) \
+ (unsigned char **)xrealloc(stackb, 2 * len * sizeof(unsigned char *))
+#endif /* NO_ALLOCA */
+
+#define RE_TALLOC(n,t) ((t*)RE_ALLOCATE((n)*sizeof(t)))
+#define TMALLOC(n,t) ((t*)xmalloc((n)*sizeof(t)))
+#define TREALLOC(s,n,t) (s=((t*)xrealloc(s,(n)*sizeof(t))))
+
+/* Get the interface, including the syntax bits. */
+#include "regex.h"
+
+static void store_jump P((char *, int, char *));
+static void insert_jump P((int, char *, char *, char *));
+static void store_jump_n P((char *, int, char *, unsigned));
+static void insert_jump_n P((int, char *, char *, char *, unsigned));
+static void insert_op_2 P((int, char *, char *, int, int ));
+static int memcmp_translate P((unsigned char *, unsigned char *,
+ int, unsigned char *));
+
+/* Define the syntax stuff, so we can do the \<, \>, etc. */
+
+/* This must be nonzero for the wordchar and notwordchar pattern
+ commands in re_match_2. */
+#ifndef Sword
+#define Sword 1
+#endif
+
+#define SYNTAX(c) re_syntax_table[c]
+
+static char re_syntax_table[256];
+static void init_syntax_once P((void));
+
+#undef P
+
+#include "util.h"
+
+static void
+init_syntax_once()
+{
+ register int c;
+ static int done = 0;
+
+ if (done)
+ return;
+
+ memset(re_syntax_table, 0, sizeof re_syntax_table);
+
+ for (c = 'a'; c <= 'z'; c++)
+ re_syntax_table[c] = Sword;
+
+ for (c = 'A'; c <= 'Z'; c++)
+ re_syntax_table[c] = Sword;
+
+ for (c = '0'; c <= '9'; c++)
+ re_syntax_table[c] = Sword;
+
+ re_syntax_table['_'] = Sword;
+
+ /* Add specific syntax for ISO Latin-1. */
+ for (c = 0300; c <= 0377; c++)
+ re_syntax_table[c] = Sword;
+ re_syntax_table[0327] = 0;
+ re_syntax_table[0367] = 0;
+
+ done = 1;
+}
+
+/* Sequents are missing isgraph. */
+#ifndef isgraph
+#define isgraph(c) (isprint((c)) && !isspace((c)))
+#endif
+
+/* These are the command codes that appear in compiled regular
+ expressions, one per byte. Some command codes are followed by
+ argument bytes. A command code can specify any interpretation
+ whatsoever for its arguments. Zero-bytes may appear in the compiled
+ regular expression.
+
+ The value of `exactn' is needed in search.c (search_buffer) in emacs.
+ So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
+ `exactn' we use here must also be 1. */
+
+enum regexpcode
+ {
+ unused=0,
+ exactn=1, /* Followed by one byte giving n, then by n literal bytes. */
+ begline, /* Fail unless at beginning of line. */
+ endline, /* Fail unless at end of line. */
+ jump, /* Followed by two bytes giving relative address to jump to. */
+ on_failure_jump, /* Followed by two bytes giving relative address of
+ place to resume at in case of failure. */
+ finalize_jump, /* Throw away latest failure point and then jump to
+ address. */
+ maybe_finalize_jump, /* Like jump but finalize if safe to do so.
+ This is used to jump back to the beginning
+ of a repeat. If the command that follows
+ this jump is clearly incompatible with the
+ one at the beginning of the repeat, such that
+ we can be sure that there is no use backtracking
+ out of repetitions already completed,
+ then we finalize. */
+ dummy_failure_jump, /* Jump, and push a dummy failure point. This
+ failure point will be thrown away if an attempt
+ is made to use it for a failure. A + construct
+ makes this before the first repeat. Also
+ use it as an intermediary kind of jump when
+ compiling an or construct. */
+ succeed_n, /* Used like on_failure_jump except has to succeed n times;
+ then gets turned into an on_failure_jump. The relative
+ address following it is useless until then. The
+ address is followed by two bytes containing n. */
+ jump_n, /* Similar to jump, but jump n times only; also the relative
+ address following is in turn followed by yet two more bytes
+ containing n. */
+ set_number_at, /* Set the following relative location to the
+ subsequent number. */
+ anychar, /* Matches any (more or less) one character. */
+ charset, /* Matches any one char belonging to specified set.
+ First following byte is number of bitmap bytes.
+ Then come bytes for a bitmap saying which chars are in.
+ Bits in each byte are ordered low-bit-first.
+ A character is in the set if its bit is 1.
+ A character too large to have a bit in the map
+ is automatically not in the set. */
+ charset_not, /* Same parameters as charset, but match any character
+ that is not one of those specified. */
+ start_memory, /* Start remembering the text that is matched, for
+ storing in a memory register. Followed by one
+ byte containing the register number. Register numbers
+ must be in the range 0 through RE_NREGS. */
+ stop_memory, /* Stop remembering the text that is matched
+ and store it in a memory register. Followed by
+ one byte containing the register number. Register
+ numbers must be in the range 0 through RE_NREGS. */
+ duplicate, /* Match a duplicate of something remembered.
+ Followed by one byte containing the index of the memory
+ register. */
+ wordchar, /* Matches any word-constituent character. */
+ notwordchar, /* Matches any char that is not a word-constituent. */
+ wordbound, /* Succeeds if at a word boundary. */
+ notwordbound,/* Succeeds if not at a word boundary. */
+ };
+
+
+/* Number of failure points to allocate space for initially,
+ when matching. If this number is exceeded, more space is allocated,
+ so it is not a hard limit. */
+
+#ifndef NFAILURES
+#define NFAILURES 80
+#endif
+
+#if defined(CHAR_UNSIGNED) || defined(__CHAR_UNSIGNED__)
+#define SIGN_EXTEND_CHAR(c) ((c)>(char)127?(c)-256:(c)) /* for IBM RT */
+#endif
+#ifndef SIGN_EXTEND_CHAR
+#define SIGN_EXTEND_CHAR(x) (x)
+#endif
+
+
+/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
+#define STORE_NUMBER(destination, number) \
+ { (destination)[0] = (number) & 0377; \
+ (destination)[1] = (number) >> 8; }
+
+/* Same as STORE_NUMBER, except increment the destination pointer to
+ the byte after where the number is stored. Watch out that values for
+ DESTINATION such as p + 1 won't work, whereas p will. */
+#define STORE_NUMBER_AND_INCR(destination, number) \
+ { STORE_NUMBER(destination, number); \
+ (destination) += 2; }
+
+
+/* Put into DESTINATION a number stored in two contingous bytes starting
+ at SOURCE. */
+#define EXTRACT_NUMBER(destination, source) \
+ { (destination) = *(source) & 0377; \
+ (destination) += SIGN_EXTEND_CHAR (*(char *)((source) + 1)) << 8; }
+
+/* Same as EXTRACT_NUMBER, except increment the pointer for source to
+ point to second byte of SOURCE. Note that SOURCE has to be a value
+ such as p, not, e.g., p + 1. */
+#define EXTRACT_NUMBER_AND_INCR(destination, source) \
+ { EXTRACT_NUMBER(destination, source); \
+ (source) += 2; }
+
+
+/* Specify the precise syntax of regexps for compilation. This provides
+ for compatibility for various utilities which historically have
+ different, incompatible syntaxes.
+
+ The argument SYNTAX is a bit-mask comprised of the various bits
+ defined in regex.h. */
+
+long
+re_set_syntax(syntax)
+ long syntax;
+{
+ long ret;
+
+ ret = re_syntax_options;
+ re_syntax_options = syntax;
+ return ret;
+}
+
+/* Set by re_set_syntax to the current regexp syntax to recognize. */
+long re_syntax_options = DEFAULT_MBCTYPE;
+
+
+/* Macros for re_compile_pattern, which is found below these definitions. */
+
+/* Fetch the next character in the uncompiled pattern---translating it
+ if necessary. Also cast from a signed character in the constant
+ string passed to us by the user to an unsigned char that we can use
+ as an array index (in, e.g., `translate'). */
+#define PATFETCH(c) \
+ do {if (p == pend) goto end_of_pattern; \
+ c = (unsigned char) *p++; \
+ if (translate) c = (unsigned char)translate[c]; \
+ } while (0)
+
+/* Fetch the next character in the uncompiled pattern, with no
+ translation. */
+#define PATFETCH_RAW(c) \
+ do {if (p == pend) goto end_of_pattern; \
+ c = (unsigned char) *p++; \
+ } while (0)
+
+/* Go backwards one character in the pattern. */
+#define PATUNFETCH p--
+
+
+/* If the buffer isn't allocated when it comes in, use this. */
+#define INIT_BUF_SIZE 28
+
+/* Make sure we have at least N more bytes of space in buffer. */
+#define GET_BUFFER_SPACE(n) \
+ { \
+ while (b - bufp->buffer + (n) >= bufp->allocated) \
+ EXTEND_BUFFER; \
+ }
+
+/* Make sure we have one more byte of buffer space and then add CH to it. */
+#define BUFPUSH(ch) \
+ { \
+ GET_BUFFER_SPACE(1); \
+ *b++ = (char)(ch); \
+ }
+
+/* Extend the buffer by twice its current size via reallociation and
+ reset the pointers that pointed into the old allocation to point to
+ the correct places in the new allocation. If extending the buffer
+ results in it being larger than 1 << 16, then flag memory exhausted. */
+#define EXTEND_BUFFER \
+ { char *old_buffer = bufp->buffer; \
+ if (bufp->allocated == (1L<<16)) goto too_big; \
+ bufp->allocated *= 2; \
+ if (bufp->allocated > (1L<<16)) bufp->allocated = (1L<<16); \
+ bufp->buffer = (char *) xrealloc (bufp->buffer, bufp->allocated); \
+ if (bufp->buffer == 0) \
+ goto memory_exhausted; \
+ b = (b - old_buffer) + bufp->buffer; \
+ if (fixup_jump) \
+ fixup_jump = (fixup_jump - old_buffer) + bufp->buffer; \
+ if (laststart) \
+ laststart = (laststart - old_buffer) + bufp->buffer; \
+ begalt = (begalt - old_buffer) + bufp->buffer; \
+ if (pending_exact) \
+ pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
+ }
+
+
+/* Set the bit for character C in a character set list. */
+#define SET_LIST_BIT(c) \
+ (b[(unsigned char)(c) / BYTEWIDTH] \
+ |= 1 << ((unsigned char)(c) % BYTEWIDTH))
+
+/* Get the next unsigned number in the uncompiled pattern. */
+#define GET_UNSIGNED_NUMBER(num) \
+ { if (p != pend) \
+ { \
+ PATFETCH(c); \
+ while (isdigit(c)) \
+ { \
+ if (num < 0) \
+ num = 0; \
+ num = num * 10 + c - '0'; \
+ if (p == pend) \
+ break; \
+ PATFETCH(c); \
+ } \
+ } \
+ }
+
+/* Subroutines for re_compile_pattern. */
+/* static void store_jump(), insert_jump(), store_jump_n(),
+ insert_jump_n(), insert_op_2(); */
+
+#define STORE_MBC(p, c) \
+ ((p)[0] = (unsigned char)(c >> 8), (p)[1] = (unsigned char)(c))
+#define STORE_MBC_AND_INCR(p, c) \
+ (*(p)++ = (unsigned char)(c >> 8), *(p)++ = (unsigned char)(c))
+
+#define EXTRACT_MBC(p) \
+ ((unsigned short)((unsigned char)(p)[0] << 8 | (unsigned char)(p)[1]))
+#define EXTRACT_MBC_AND_INCR(p) \
+ ((unsigned short)((p) += 2, (unsigned char)(p)[-2] << 8 | (unsigned char)(p)[-1]))
+
+#define EXTRACT_UNSIGNED(p) \
+ ((unsigned char)(p)[0] | (unsigned char)(p)[1] << 8)
+#define EXTRACT_UNSIGNED_AND_INCR(p) \
+ ((p) += 2, (unsigned char)(p)[-2] | (unsigned char)(p)[-1] << 8)
+
+/* Handle (mb)?charset(_not)?.
+
+ Structure of mbcharset(_not)? in compiled pattern.
+
+ struct {
+ unsinged char id; mbcharset(_not)?
+ unsigned char sbc_size;
+ unsigned char sbc_map[sbc_size]; same as charset(_not)? up to here.
+ unsigned short mbc_size; number of intervals.
+ struct {
+ unsigned short beg; beginning of interval.
+ unsigned short end; end of interval.
+ } intervals[mbc_size];
+ }; */
+
+static void
+set_list_bits(c1, c2, b)
+ unsigned short c1, c2;
+ unsigned char *b;
+{
+ unsigned char sbc_size = b[-1];
+ unsigned short mbc_size = EXTRACT_UNSIGNED(&b[sbc_size]);
+ unsigned short beg, end, upb;
+
+ if (c1 > c2)
+ return;
+ if ((int)c1 < 1 << BYTEWIDTH) {
+ upb = c2;
+ if (1 << BYTEWIDTH <= (int)upb)
+ upb = (1 << BYTEWIDTH) - 1; /* The last single-byte char */
+ if (sbc_size <= (unsigned short)(upb / BYTEWIDTH)) {
+ /* Allocate maximum size so it never happens again. */
+ /* NOTE: memcpy() would not work here. */
+ memmove(&b[(1 << BYTEWIDTH) / BYTEWIDTH], &b[sbc_size], 2 + mbc_size*4);
+ memset(&b[sbc_size], 0, (1 << BYTEWIDTH) / BYTEWIDTH - sbc_size);
+ b[-1] = sbc_size = (1 << BYTEWIDTH) / BYTEWIDTH;
+ }
+ for (; c1 <= upb; c1++)
+ if (!ismbchar(c1))
+ SET_LIST_BIT(c1);
+ if ((int)c2 < 1 << BYTEWIDTH)
+ return;
+ c1 = 0x8000; /* The first wide char */
+ }
+ b = &b[sbc_size + 2];
+
+ for (beg = 0, upb = mbc_size; beg < upb; ) {
+ unsigned short mid = (unsigned short)(beg + upb) >> 1;
+
+ if ((int)c1 - 1 > (int)EXTRACT_MBC(&b[mid*4 + 2]))
+ beg = mid + 1;
+ else
+ upb = mid;
+ }
+
+ for (end = beg, upb = mbc_size; end < upb; ) {
+ unsigned short mid = (unsigned short)(end + upb) >> 1;
+
+ if ((int)c2 >= (int)EXTRACT_MBC(&b[mid*4]) - 1)
+ end = mid + 1;
+ else
+ upb = mid;
+ }
+
+ if (beg != end) {
+ if (c1 > EXTRACT_MBC(&b[beg*4]))
+ c1 = EXTRACT_MBC(&b[beg*4]);
+ if (c2 < EXTRACT_MBC(&b[(end - 1)*4]))
+ c2 = EXTRACT_MBC(&b[(end - 1)*4]);
+ }
+ if (end < mbc_size && end != beg + 1)
+ /* NOTE: memcpy() would not work here. */
+ memmove(&b[(beg + 1)*4], &b[end*4], (mbc_size - end)*4);
+ STORE_MBC(&b[beg*4 + 0], c1);
+ STORE_MBC(&b[beg*4 + 2], c2);
+ mbc_size += beg - end + 1;
+ STORE_NUMBER(&b[-2], mbc_size);
+}
+
+static int
+is_in_list(c, b)
+ unsigned short c;
+ const unsigned char *b;
+{
+ unsigned short size;
+ unsigned short i, j;
+ int result = 0;
+
+ size = *b++;
+ if ((int)c < 1<<BYTEWIDTH) {
+ if ((int)c / BYTEWIDTH < (int)size && b[c / BYTEWIDTH] & 1 << c % BYTEWIDTH) {
+ return 1;
+ }
+ }
+ b += size + 2;
+ size = EXTRACT_UNSIGNED(&b[-2]);
+ if (size == 0) return 0;
+
+ if (b[(size-1)*4] == 0xff) {
+ i = c;
+ if ((int)c >= 1<<BYTEWIDTH) {
+ i = i>>BYTEWIDTH;
+ }
+ while (size>0 && b[size*4-2] == 0xff) {
+ size--;
+ if (b[size*4+1] <= i && i <= b[size*4+3]) {
+ result = 2;
+ break;
+ }
+ }
+ }
+ for (i = 0, j = size; i < j; ) {
+ unsigned short k = (unsigned short)(i + j) >> 1;
+
+ if (c > EXTRACT_MBC(&b[k*4+2]))
+ i = k + 1;
+ else
+ j = k;
+ }
+ if (i < size && EXTRACT_MBC(&b[i*4]) <= c
+ && ((unsigned char)c != '\n' && (unsigned char)c != '\0'))
+ return 1;
+ return result;
+}
+
+/* re_compile_pattern takes a regular-expression string
+ and converts it into a buffer full of byte commands for matching.
+
+ PATTERN is the address of the pattern string
+ SIZE is the length of it.
+ BUFP is a struct re_pattern_buffer * which points to the info
+ on where to store the byte commands.
+ This structure contains a char * which points to the
+ actual space, which should have been obtained with malloc.
+ re_compile_pattern may use realloc to grow the buffer space.
+
+ The number of bytes of commands can be found out by looking in
+ the `struct re_pattern_buffer' that bufp pointed to, after
+ re_compile_pattern returns. */
+
+char *
+re_compile_pattern(pattern, size, bufp)
+ char *pattern;
+ size_t size;
+ struct re_pattern_buffer *bufp;
+{
+ register char *b = bufp->buffer;
+ register char *p = pattern;
+ char *pend = pattern + size;
+ register unsigned c, c1;
+ char *p0;
+ int numlen;
+
+ /* Address of the count-byte of the most recently inserted `exactn'
+ command. This makes it possible to tell whether a new exact-match
+ character can be added to that command or requires a new `exactn'
+ command. */
+
+ char *pending_exact = 0;
+
+ /* Address of the place where a forward-jump should go to the end of
+ the containing expression. Each alternative of an `or', except the
+ last, ends with a forward-jump of this sort. */
+
+ char *fixup_jump = 0;
+
+ /* Address of start of the most recently finished expression.
+ This tells postfix * where to find the start of its operand. */
+
+ char *laststart = 0;
+
+ /* In processing a repeat, 1 means zero matches is allowed. */
+
+ char zero_times_ok;
+
+ /* In processing a repeat, 1 means many matches is allowed. */
+
+ char many_times_ok;
+
+ /* Address of beginning of regexp, or inside of last \(. */
+
+ char *begalt = b;
+
+ /* In processing an interval, at least this many matches must be made. */
+ int lower_bound;
+
+ /* In processing an interval, at most this many matches can be made. */
+ int upper_bound;
+
+ /* Place in pattern (i.e., the {) to which to go back if the interval
+ is invalid. */
+ char *beg_interval = 0;
+
+ /* Stack of information saved by \( and restored by \).
+ Four stack elements are pushed by each \(:
+ First, the value of b.
+ Second, the value of fixup_jump.
+ Third, the value of regnum.
+ Fourth, the value of begalt. */
+
+ int stackb[40];
+ int *stackp = stackb;
+ int *stacke = stackb + 40;
+ int *stackt;
+
+ /* Counts \('s as they are encountered. Remembered for the matching \),
+ where it becomes the register number to put in the stop_memory
+ command. */
+
+ int regnum = 1;
+ int range = 0;
+
+ /* How to translate the characters in the pattern. */
+ char *translate = bufp->translate;
+
+ bufp->fastmap_accurate = 0;
+
+ /* Initialize the syntax table. */
+ init_syntax_once();
+
+ if (bufp->allocated == 0)
+ {
+ bufp->allocated = INIT_BUF_SIZE;
+ if (bufp->buffer)
+ /* EXTEND_BUFFER loses when bufp->allocated is 0. */
+ bufp->buffer = (char *) xrealloc (bufp->buffer, INIT_BUF_SIZE);
+ else
+ /* Caller did not allocate a buffer. Do it for them. */
+ bufp->buffer = (char *) xmalloc(INIT_BUF_SIZE);
+ if (!bufp->buffer) goto memory_exhausted;
+ begalt = b = bufp->buffer;
+ }
+
+ while (p != pend)
+ {
+ PATFETCH(c);
+
+ switch (c)
+ {
+ case '$':
+ {
+ char *p1 = p;
+ /* When testing what follows the $,
+ look past the \-constructs that don't consume anything. */
+ if (! (re_syntax_options & RE_CONTEXT_INDEP_OPS))
+ while (p1 != pend)
+ {
+ if (*p1 == '\\' && p1 + 1 != pend
+ && (p1[1] == 'b' || p1[1] == 'B'))
+ p1 += 2;
+ else
+ break;
+ }
+ if (re_syntax_options & RE_TIGHT_VBAR)
+ {
+ if (! (re_syntax_options & RE_CONTEXT_INDEP_OPS) && p1 != pend)
+ goto normal_char;
+ /* Make operand of last vbar end before this `$'. */
+ if (fixup_jump)
+ store_jump(fixup_jump, jump, b);
+ fixup_jump = 0;
+ BUFPUSH(endline);
+ break;
+ }
+ /* $ means succeed if at end of line, but only in special contexts.
+ If validly in the middle of a pattern, it is a normal character. */
+
+#if 0
+ /* not needed for perl4 compatible */
+ if ((re_syntax_options & RE_CONTEXTUAL_INVALID_OPS) && p1 != pend)
+ goto invalid_pattern;
+#endif
+ if (p1 == pend || *p1 == '\n'
+ || (re_syntax_options & RE_CONTEXT_INDEP_OPS)
+ || (re_syntax_options & RE_NO_BK_PARENS
+ ? *p1 == ')'
+ : *p1 == '\\' && p1[1] == ')')
+ || (re_syntax_options & RE_NO_BK_VBAR
+ ? *p1 == '|'
+ : *p1 == '\\' && p1[1] == '|'))
+ {
+ BUFPUSH(endline);
+ break;
+ }
+ goto normal_char;
+ }
+ case '^':
+ /* ^ means succeed if at beg of line, but only if no preceding
+ pattern. */
+
+ if ((re_syntax_options & RE_CONTEXTUAL_INVALID_OPS) && laststart)
+ goto invalid_pattern;
+ if (laststart && p - 2 >= pattern && p[-2] != '\n'
+ && !(re_syntax_options & RE_CONTEXT_INDEP_OPS))
+ goto normal_char;
+ if (re_syntax_options & RE_TIGHT_VBAR)
+ {
+ if (p != pattern + 1
+ && ! (re_syntax_options & RE_CONTEXT_INDEP_OPS))
+ goto normal_char;
+ BUFPUSH(begline);
+ begalt = b;
+ }
+ else
+ {
+ BUFPUSH(begline);
+ }
+ break;
+
+ case '+':
+ case '?':
+ if ((re_syntax_options & RE_BK_PLUS_QM)
+ || (re_syntax_options & RE_LIMITED_OPS))
+ goto normal_char;
+ handle_plus:
+ case '*':
+ /* If there is no previous pattern, char not special. */
+ if (!laststart)
+ {
+ if (re_syntax_options & RE_CONTEXTUAL_INVALID_OPS)
+ goto invalid_pattern;
+ else if (! (re_syntax_options & RE_CONTEXT_INDEP_OPS))
+ goto normal_char;
+ }
+ /* If there is a sequence of repetition chars,
+ collapse it down to just one. */
+ zero_times_ok = 0;
+ many_times_ok = 0;
+ while (1)
+ {
+ zero_times_ok |= c != '+';
+ many_times_ok |= c != '?';
+ if (p == pend)
+ break;
+ PATFETCH(c);
+ if (c == '*')
+ ;
+ else if (!(re_syntax_options & RE_BK_PLUS_QM)
+ && (c == '+' || c == '?'))
+ ;
+ else if ((re_syntax_options & RE_BK_PLUS_QM)
+ && c == '\\')
+ {
+ /* int c1; */
+ PATFETCH(c1);
+ if (!(c1 == '+' || c1 == '?'))
+ {
+ PATUNFETCH;
+ PATUNFETCH;
+ break;
+ }
+ c = c1;
+ }
+ else
+ {
+ PATUNFETCH;
+ break;
+ }
+ }
+
+ /* Star, etc. applied to an empty pattern is equivalent
+ to an empty pattern. */
+ if (!laststart)
+ break;
+
+ /* Now we know whether or not zero matches is allowed
+ and also whether or not two or more matches is allowed. */
+ if (many_times_ok)
+ {
+ /* If more than one repetition is allowed, put in at the
+ end a backward relative jump from b to before the next
+ jump we're going to put in below (which jumps from
+ laststart to after this jump). */
+ GET_BUFFER_SPACE(3);
+ store_jump(b, maybe_finalize_jump, laststart - 3);
+ b += 3; /* Because store_jump put stuff here. */
+ }
+ /* On failure, jump from laststart to b + 3, which will be the
+ end of the buffer after this jump is inserted. */
+ GET_BUFFER_SPACE(3);
+ insert_jump(on_failure_jump, laststart, b + 3, b);
+ pending_exact = 0;
+ b += 3;
+ if (!zero_times_ok)
+ {
+ /* At least one repetition is required, so insert a
+ dummy-failure before the initial on-failure-jump
+ instruction of the loop. This effects a skip over that
+ instruction the first time we hit that loop. */
+ GET_BUFFER_SPACE(6);
+ insert_jump(dummy_failure_jump, laststart, laststart + 6, b);
+ b += 3;
+ }
+ break;
+
+ case '.':
+ laststart = b;
+ BUFPUSH(anychar);
+ break;
+
+ case '[':
+ if (p == pend)
+ goto invalid_pattern;
+ while (b - bufp->buffer
+ > bufp->allocated - 9 - (1 << BYTEWIDTH) / BYTEWIDTH)
+ EXTEND_BUFFER;
+
+ laststart = b;
+ if (*p == '^')
+ {
+ BUFPUSH(charset_not);
+ p++;
+ }
+ else
+ BUFPUSH(charset);
+ p0 = p;
+
+ BUFPUSH((1 << BYTEWIDTH) / BYTEWIDTH);
+ /* Clear the whole map */
+ memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH + 2);
+
+ if ((re_syntax_options & RE_HAT_NOT_NEWLINE) && b[-2] == charset_not)
+ SET_LIST_BIT('\n');
+
+
+ /* Read in characters and ranges, setting map bits. */
+ while (1)
+ {
+ int size;
+ unsigned last = (unsigned)-1;
+
+ if ((size = EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH]))) {
+ /* Ensure the space is enough to hold another interval
+ of multi-byte chars in charset(_not)?. */
+ size = (1 << BYTEWIDTH) / BYTEWIDTH + 2 + size*4 + 4;
+ while (b + size + 1 > bufp->buffer + bufp->allocated)
+ EXTEND_BUFFER;
+ }
+ range_retry:
+ PATFETCH(c);
+
+ if (c == ']') {
+ if (p == p0 + 1) {
+ /* If this is an empty bracket expression. */
+ if ((re_syntax_options & RE_NO_EMPTY_BRACKETS)
+ && p == pend)
+ goto invalid_pattern;
+ }
+ else
+ /* Stop if this isn't merely a ] inside a bracket
+ expression, but rather the end of a bracket
+ expression. */
+ break;
+ }
+ if (ismbchar(c)) {
+ PATFETCH(c1);
+ c = c << BYTEWIDTH | c1;
+ }
+
+ /* \ escapes characters when inside [...]. */
+ if (c == '\\') {
+ PATFETCH(c);
+ switch (c) {
+ case 'w':
+ for (c = 0; c < (1 << BYTEWIDTH); c++)
+ if (SYNTAX(c) == Sword)
+ SET_LIST_BIT(c);
+ last = -1;
+ continue;
+
+ case 'W':
+ for (c = 0; c < (1 << BYTEWIDTH); c++)
+ if (SYNTAX(c) != Sword)
+ SET_LIST_BIT(c);
+ if (re_syntax_options & RE_MBCTYPE_MASK) {
+ set_list_bits(0x8000, 0xffff, (unsigned char*)b);
+ }
+ last = -1;
+ continue;
+
+ case 's':
+ for (c = 0; c < 256; c++)
+ if (isspace(c))
+ SET_LIST_BIT(c);
+ last = -1;
+ continue;
+
+ case 'S':
+ for (c = 0; c < 256; c++)
+ if (!isspace(c))
+ SET_LIST_BIT(c);
+ if (re_syntax_options & RE_MBCTYPE_MASK) {
+ set_list_bits(0x8000, 0xffff, (unsigned char*)b);
+ }
+ last = -1;
+ continue;
+
+ case 'd':
+ for (c = '0'; c <= '9'; c++)
+ SET_LIST_BIT(c);
+ last = -1;
+ continue;
+
+ case 'D':
+ for (c = 0; c < 256; c++)
+ if (!isdigit(c))
+ SET_LIST_BIT(c);
+ if (re_syntax_options & RE_MBCTYPE_MASK) {
+ set_list_bits(0x8000, 0xffff, (unsigned char*)b);
+ }
+ last = -1;
+ continue;
+
+ case 'x':
+ c = scan_hex(p, 2, &numlen);
+ if ((re_syntax_options & RE_MBCTYPE_MASK) && c > 0x7f)
+ c = 0xff00 | c;
+ p += numlen;
+ break;
+
+ case '0': case '1': case '2': case '3': case '4':
+ case '5': case '6': case '7': case '8': case '9':
+ PATUNFETCH;
+ c = scan_oct(p, 3, &numlen);
+ if ((re_syntax_options & RE_MBCTYPE_MASK) && ismbchar(c))
+ c = 0xff00 | c;
+ p += numlen;
+ break;
+
+ default:
+ if (ismbchar(c)) {
+ PATFETCH(c1);
+ c = c << 8 | c1;
+ }
+ break;
+ }
+ }
+
+ /* Get a range. */
+ if (range) {
+ if (last > c)
+ goto invalid_pattern;
+
+ if ((re_syntax_options & RE_NO_HYPHEN_RANGE_END)
+ && c == '-' && *p != ']')
+ goto invalid_pattern;
+
+ range = 0;
+ if (last < 1 << BYTEWIDTH && c < 1 << BYTEWIDTH) {
+ for (;last<=c;last++)
+ SET_LIST_BIT(last);
+ }
+ else {
+ set_list_bits(last, c, (unsigned char*)b);
+ }
+ }
+ else if (p[0] == '-' && p[1] != ']') {
+ last = c;
+ PATFETCH(c1);
+ range = 1;
+ goto range_retry;
+ }
+ else if (c < 1 << BYTEWIDTH)
+ SET_LIST_BIT(c);
+ else
+ set_list_bits(c, c, (unsigned char*)b);
+ }
+
+ /* Discard any character set/class bitmap bytes that are all
+ 0 at the end of the map. Decrement the map-length byte too. */
+ while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+ b[-1]--;
+ if (b[-1] != (1 << BYTEWIDTH) / BYTEWIDTH)
+ memmove(&b[b[-1]], &b[(1 << BYTEWIDTH) / BYTEWIDTH],
+ 2 + EXTRACT_UNSIGNED (&b[(1 << BYTEWIDTH) / BYTEWIDTH])*4);
+ b += b[-1] + 2 + EXTRACT_UNSIGNED (&b[b[-1]])*4;
+ break;
+
+ case '(':
+ if (! (re_syntax_options & RE_NO_BK_PARENS))
+ goto normal_char;
+ else
+ goto handle_open;
+
+ case ')':
+ if (! (re_syntax_options & RE_NO_BK_PARENS))
+ goto normal_char;
+ else
+ goto handle_close;
+
+ case '\n':
+ if (! (re_syntax_options & RE_NEWLINE_OR))
+ goto normal_char;
+ else
+ goto handle_bar;
+
+ case '|':
+#if 0
+ /* not needed for perl4 compatible */
+ if ((re_syntax_options & RE_CONTEXTUAL_INVALID_OPS)
+ && (! laststart || p == pend))
+ goto invalid_pattern;
+ else
+ if (! (re_syntax_options & RE_NO_BK_VBAR))
+ goto normal_char;
+ else
+#endif
+ goto handle_bar;
+
+ case '{':
+ if (! ((re_syntax_options & RE_NO_BK_CURLY_BRACES)
+ && (re_syntax_options & RE_INTERVALS)))
+ goto normal_char;
+ else
+ goto handle_interval;
+
+ case '\\':
+ if (p == pend) goto invalid_pattern;
+ /* Do not translate the character after the \, so that we can
+ distinguish, e.g., \B from \b, even if we normally would
+ translate, e.g., B to b. */
+ PATFETCH_RAW(c);
+ switch (c)
+ {
+ case '(':
+ if (re_syntax_options & RE_NO_BK_PARENS)
+ goto normal_backsl;
+ handle_open:
+ if (stackp == stacke) goto nesting_too_deep;
+
+ /* Laststart should point to the start_memory that we are about
+ to push (unless the pattern has RE_NREGS or more ('s). */
+ /* obsolete: now RE_NREGS is just a default register size. */
+ *stackp++ = b - bufp->buffer;
+ BUFPUSH(start_memory);
+ BUFPUSH(regnum);
+ *stackp++ = fixup_jump ? fixup_jump - bufp->buffer + 1 : 0;
+ *stackp++ = regnum++;
+ *stackp++ = begalt - bufp->buffer;
+ fixup_jump = 0;
+ laststart = 0;
+ begalt = b;
+ /* too many ()'s to fit in a byte. */
+ if (regnum >= (1<<BYTEWIDTH)) goto too_big;
+ break;
+
+ case ')':
+ if (re_syntax_options & RE_NO_BK_PARENS)
+ goto normal_backsl;
+ handle_close:
+ if (stackp == stackb) goto unmatched_close;
+ begalt = *--stackp + bufp->buffer;
+ if (fixup_jump)
+ store_jump(fixup_jump, jump, b);
+ BUFPUSH(stop_memory);
+ BUFPUSH(stackp[-1]);
+ stackp -= 2;
+ fixup_jump = *stackp ? *stackp + bufp->buffer - 1 : 0;
+ laststart = *--stackp + bufp->buffer;
+ break;
+
+ case '|':
+ if ((re_syntax_options & RE_LIMITED_OPS)
+ || (re_syntax_options & RE_NO_BK_VBAR))
+ goto normal_backsl;
+ handle_bar:
+ if (re_syntax_options & RE_LIMITED_OPS)
+ goto normal_char;
+ /* Insert before the previous alternative a jump which
+ jumps to this alternative if the former fails. */
+ GET_BUFFER_SPACE(6);
+ insert_jump(on_failure_jump, begalt, b + 6, b);
+ pending_exact = 0;
+ b += 3;
+ /* The alternative before the previous alternative has a
+ jump after it which gets executed if it gets matched.
+ Adjust that jump so it will jump to the previous
+ alternative's analogous jump (put in below, which in
+ turn will jump to the next (if any) alternative's such
+ jump, etc.). The last such jump jumps to the correct
+ final destination. */
+ if (fixup_jump)
+ store_jump(fixup_jump, jump, b);
+
+ /* Leave space for a jump after previous alternative---to be
+ filled in later. */
+ fixup_jump = b;
+ b += 3;
+
+ laststart = 0;
+ begalt = b;
+ break;
+
+ case '{':
+ if (! (re_syntax_options & RE_INTERVALS)
+ /* Let \{ be a literal. */
+ || ((re_syntax_options & RE_INTERVALS)
+ && (re_syntax_options & RE_NO_BK_CURLY_BRACES))
+ /* If it's the string "\{". */
+ || (p - 2 == pattern && p == pend))
+ goto normal_backsl;
+ handle_interval:
+ beg_interval = p - 1; /* The {. */
+ /* If there is no previous pattern, this isn't an interval. */
+ if (!laststart)
+ {
+ if (re_syntax_options & RE_CONTEXTUAL_INVALID_OPS)
+ goto invalid_pattern;
+ else
+ goto normal_backsl;
+ }
+ /* It also isn't an interval if not preceded by an re
+ matching a single character or subexpression, or if
+ the current type of intervals can't handle back
+ references and the previous thing is a back reference. */
+ if (! (*laststart == anychar
+ || *laststart == charset
+ || *laststart == charset_not
+ || *laststart == wordchar
+ || *laststart == notwordchar
+ || *laststart == start_memory
+ || (*laststart == exactn
+ && (laststart[1] == 1
+ || laststart[1] == 2 && ismbchar(laststart[2])))
+ || (! (re_syntax_options & RE_NO_BK_REFS)
+ && *laststart == duplicate)))
+ {
+ if (re_syntax_options & RE_NO_BK_CURLY_BRACES)
+ goto normal_char;
+
+ /* Posix extended syntax is handled in previous
+ statement; this is for Posix basic syntax. */
+ if (re_syntax_options & RE_INTERVALS)
+ goto invalid_pattern;
+
+ goto normal_backsl;
+ }
+ lower_bound = -1; /* So can see if are set. */
+ upper_bound = -1;
+ GET_UNSIGNED_NUMBER(lower_bound);
+ if (c == ',')
+ {
+ GET_UNSIGNED_NUMBER(upper_bound);
+ if (upper_bound < 0)
+ upper_bound = RE_DUP_MAX;
+ }
+ if (upper_bound < 0)
+ upper_bound = lower_bound;
+ if (! (re_syntax_options & RE_NO_BK_CURLY_BRACES))
+ {
+ if (c != '\\')
+ goto invalid_pattern;
+ PATFETCH(c);
+ }
+ if (c != '}' || lower_bound < 0 || upper_bound > RE_DUP_MAX
+ || lower_bound > upper_bound
+ || ((re_syntax_options & RE_NO_BK_CURLY_BRACES)
+ && p != pend && *p == '{'))
+ {
+ if (re_syntax_options & RE_NO_BK_CURLY_BRACES)
+ goto unfetch_interval;
+ else
+ goto invalid_pattern;
+ }
+
+ /* If upper_bound is zero, don't want to succeed at all;
+ jump from laststart to b + 3, which will be the end of
+ the buffer after this jump is inserted. */
+
+ if (upper_bound == 0)
+ {
+ GET_BUFFER_SPACE(3);
+ insert_jump(jump, laststart, b + 3, b);
+ b += 3;
+ }
+
+ /* Otherwise, after lower_bound number of succeeds, jump
+ to after the jump_n which will be inserted at the end
+ of the buffer, and insert that jump_n. */
+ else
+ { /* Set to 5 if only one repetition is allowed and
+ hence no jump_n is inserted at the current end of
+ the buffer; then only space for the succeed_n is
+ needed. Otherwise, need space for both the
+ succeed_n and the jump_n. */
+
+ unsigned slots_needed = upper_bound == 1 ? 5 : 10;
+
+ GET_BUFFER_SPACE(slots_needed);
+ /* Initialize the succeed_n to n, even though it will
+ be set by its attendant set_number_at, because
+ re_compile_fastmap will need to know it. Jump to
+ what the end of buffer will be after inserting
+ this succeed_n and possibly appending a jump_n. */
+ insert_jump_n(succeed_n, laststart, b + slots_needed,
+ b, lower_bound);
+ b += 5; /* Just increment for the succeed_n here. */
+
+ /* When hit this when matching, set the succeed_n's n. */
+ GET_BUFFER_SPACE(5);
+ insert_op_2(set_number_at, laststart, b, 5, lower_bound);
+ b += 5;
+
+ /* More than one repetition is allowed, so put in at
+ the end of the buffer a backward jump from b to the
+ succeed_n we put in above. By the time we've gotten
+ to this jump when matching, we'll have matched once
+ already, so jump back only upper_bound - 1 times. */
+
+ if (upper_bound > 1)
+ {
+ GET_BUFFER_SPACE(15);
+ store_jump_n(b, jump_n, laststart+5, upper_bound - 1);
+ b += 5;
+ /* When hit this when matching, reset the
+ preceding jump_n's n to upper_bound - 1. */
+ insert_op_2(set_number_at, laststart, b, b - laststart, upper_bound - 1);
+ b += 5;
+
+ BUFPUSH(set_number_at);
+ STORE_NUMBER_AND_INCR(b, -5);
+ STORE_NUMBER_AND_INCR(b, upper_bound - 1);
+ }
+ }
+ pending_exact = 0;
+ beg_interval = 0;
+ break;
+
+
+ unfetch_interval:
+ /* If an invalid interval, match the characters as literals. */
+ if (beg_interval)
+ p = beg_interval;
+ else
+ {
+ fprintf(stderr,
+ "regex: no interval beginning to which to backtrack.\n");
+ exit (1);
+ }
+
+ beg_interval = 0;
+ PATFETCH(c); /* normal_char expects char in `c'. */
+ goto normal_char;
+ break;
+
+ case 's':
+ case 'S':
+ case 'd':
+ case 'D':
+ while (b - bufp->buffer
+ > bufp->allocated - 9 - (1 << BYTEWIDTH) / BYTEWIDTH)
+ EXTEND_BUFFER;
+
+ laststart = b;
+ if (c == 's' || c == 'd') {
+ BUFPUSH(charset);
+ }
+ else {
+ BUFPUSH(charset_not);
+ }
+
+ BUFPUSH((1 << BYTEWIDTH) / BYTEWIDTH);
+ memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH + 2);
+ if (c == 's' || c == 'S') {
+ SET_LIST_BIT(' ');
+ SET_LIST_BIT('\t');
+ SET_LIST_BIT('\n');
+ SET_LIST_BIT('\r');
+ SET_LIST_BIT('\f');
+ }
+ else {
+ char cc;
+
+ for (cc = '0'; cc <= '9'; cc++) {
+ SET_LIST_BIT(cc);
+ }
+ }
+
+ while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+ b[-1]--;
+ if (b[-1] != (1 << BYTEWIDTH) / BYTEWIDTH)
+ memmove(&b[b[-1]], &b[(1 << BYTEWIDTH) / BYTEWIDTH],
+ 2 + EXTRACT_UNSIGNED(&b[(1 << BYTEWIDTH) / BYTEWIDTH])*4);
+ b += b[-1] + 2 + EXTRACT_UNSIGNED(&b[b[-1]])*4;
+ break;
+
+ case 'w':
+ laststart = b;
+ BUFPUSH(wordchar);
+ break;
+
+ case 'W':
+ laststart = b;
+ BUFPUSH(notwordchar);
+ break;
+
+ case 'b':
+ BUFPUSH(wordbound);
+ break;
+
+ case 'B':
+ BUFPUSH(notwordbound);
+ break;
+
+ /* hex */
+ case 'x':
+ c1 = 0;
+ c = scan_hex(p, 2, &numlen);
+ p += numlen;
+ if ((re_syntax_options & RE_MBCTYPE_MASK) && c > 0x7f)
+ c1 = 0xff;
+ goto numeric_char;
+
+ /* octal */
+ case '0':
+ c1 = 0;
+ c = scan_oct(p, 3, &numlen);
+ p += numlen;
+ if ((re_syntax_options & RE_MBCTYPE_MASK) && c > 0x7f)
+ c1 = 0xff;
+ goto numeric_char;
+
+ /* back-ref or octal */
+ case '1': case '2': case '3':
+ case '4': case '5': case '6':
+ case '7': case '8': case '9':
+ {
+ char *p_save;
+
+ PATUNFETCH;
+ p_save = p;
+
+ c1 = 0;
+ GET_UNSIGNED_NUMBER(c1);
+ if (p < pend) PATUNFETCH;
+
+ if (c1 >= regnum) {
+ /* need to get octal */
+ p = p_save;
+ c = scan_oct(p_save, 3, &numlen);
+ p = p_save + numlen;
+ c1 = 0;
+ if ((re_syntax_options & RE_MBCTYPE_MASK) && c > 0x7f)
+ c1 = 0xff;
+ goto numeric_char;
+ }
+ }
+
+ /* Can't back reference to a subexpression if inside of it. */
+ for (stackt = stackp - 2; stackt > stackb; stackt -= 4)
+ if (*stackt == c1)
+ goto normal_char;
+ laststart = b;
+ BUFPUSH(duplicate);
+ BUFPUSH(c1);
+ break;
+
+ case '+':
+ case '?':
+ if (re_syntax_options & RE_BK_PLUS_QM)
+ goto handle_plus;
+ else
+ goto normal_backsl;
+ break;
+
+ default:
+ normal_backsl:
+ goto normal_char;
+ }
+ break;
+
+ default:
+ normal_char: /* Expects the character in `c'. */
+ c1 = 0;
+ if (ismbchar(c)) {
+ c1 = c;
+ PATFETCH(c);
+ }
+ else if (c > 0x7f) {
+ c1 = 0xff;
+ }
+ numeric_char:
+ if (!pending_exact || pending_exact + *pending_exact + 1 != b
+ || *pending_exact >= (c1 ? 0176 : 0177)
+ || *p == '*' || *p == '^'
+ || ((re_syntax_options & RE_BK_PLUS_QM)
+ ? *p == '\\' && (p[1] == '+' || p[1] == '?')
+ : (*p == '+' || *p == '?'))
+ || ((re_syntax_options & RE_INTERVALS)
+ && ((re_syntax_options & RE_NO_BK_CURLY_BRACES)
+ ? *p == '{'
+ : (p[0] == '\\' && p[1] == '{'))))
+ {
+ laststart = b;
+ BUFPUSH(exactn);
+ pending_exact = b;
+ BUFPUSH(0);
+ }
+ if (c1) {
+ BUFPUSH(c1);
+ (*pending_exact)++;
+ }
+ BUFPUSH(c);
+ (*pending_exact)++;
+ }
+ }
+
+ if (fixup_jump)
+ store_jump(fixup_jump, jump, b);
+
+ if (stackp != stackb) goto unmatched_open;
+
+ bufp->used = b - bufp->buffer;
+ bufp->re_nsub = regnum;
+ return 0;
+
+ invalid_char:
+ return "Invalid character in regular expression";
+
+ invalid_pattern:
+ return "Invalid regular expression";
+
+ unmatched_open:
+ return "Unmatched (";
+
+ unmatched_close:
+ return "Unmatched )";
+
+ end_of_pattern:
+ return "Premature end of regular expression";
+
+ nesting_too_deep:
+ return "Nesting too deep";
+
+ too_big:
+ return "Regular expression too big";
+
+ memory_exhausted:
+ return "Memory exhausted";
+}
+
+
+/* Store a jump of the form <OPCODE> <relative address>.
+ Store in the location FROM a jump operation to jump to relative
+ address FROM - TO. OPCODE is the opcode to store. */
+
+static void
+store_jump(from, opcode, to)
+ char *from, *to;
+ int opcode;
+{
+ from[0] = (char)opcode;
+ STORE_NUMBER(from + 1, to - (from + 3));
+}
+
+
+/* Open up space before char FROM, and insert there a jump to TO.
+ CURRENT_END gives the end of the storage not in use, so we know
+ how much data to copy up. OP is the opcode of the jump to insert.
+
+ If you call this function, you must zero out pending_exact. */
+
+static void
+insert_jump(op, from, to, current_end)
+ int op;
+ char *from, *to, *current_end;
+{
+ register char *pfrom = current_end; /* Copy from here... */
+ register char *pto = current_end + 3; /* ...to here. */
+
+ while (pfrom != from)
+ *--pto = *--pfrom;
+ store_jump(from, op, to);
+}
+
+
+/* Store a jump of the form <opcode> <relative address> <n> .
+
+ Store in the location FROM a jump operation to jump to relative
+ address FROM - TO. OPCODE is the opcode to store, N is a number the
+ jump uses, say, to decide how many times to jump.
+
+ If you call this function, you must zero out pending_exact. */
+
+static void
+store_jump_n(from, opcode, to, n)
+ char *from, *to;
+ int opcode;
+ unsigned n;
+{
+ from[0] = (char)opcode;
+ STORE_NUMBER(from + 1, to - (from + 3));
+ STORE_NUMBER(from + 3, n);
+}
+
+
+/* Similar to insert_jump, but handles a jump which needs an extra
+ number to handle minimum and maximum cases. Open up space at
+ location FROM, and insert there a jump to TO. CURRENT_END gives the
+ end of the storage in use, so we know how much data to copy up. OP is
+ the opcode of the jump to insert.
+
+ If you call this function, you must zero out pending_exact. */
+
+static void
+insert_jump_n(op, from, to, current_end, n)
+ int op;
+ char *from, *to, *current_end;
+ unsigned n;
+{
+ register char *pfrom = current_end; /* Copy from here... */
+ register char *pto = current_end + 5; /* ...to here. */
+
+ while (pfrom != from)
+ *--pto = *--pfrom;
+ store_jump_n(from, op, to, n);
+}
+
+
+/* Open up space at location THERE, and insert operation OP followed by
+ NUM_1 and NUM_2. CURRENT_END gives the end of the storage in use, so
+ we know how much data to copy up.
+
+ If you call this function, you must zero out pending_exact. */
+
+static void
+insert_op_2(op, there, current_end, num_1, num_2)
+ int op;
+ char *there, *current_end;
+ int num_1, num_2;
+{
+ register char *pfrom = current_end; /* Copy from here... */
+ register char *pto = current_end + 5; /* ...to here. */
+
+ while (pfrom != there)
+ *--pto = *--pfrom;
+
+ there[0] = (char)op;
+ STORE_NUMBER(there + 1, num_1);
+ STORE_NUMBER(there + 3, num_2);
+}
+
+
+
+/* Given a pattern, compute a fastmap from it. The fastmap records
+ which of the (1 << BYTEWIDTH) possible characters can start a string
+ that matches the pattern. This fastmap is used by re_search to skip
+ quickly over totally implausible text.
+
+ The caller must supply the address of a (1 << BYTEWIDTH)-byte data
+ area as bufp->fastmap.
+ The other components of bufp describe the pattern to be used. */
+
+void
+re_compile_fastmap(bufp)
+ struct re_pattern_buffer *bufp;
+{
+ unsigned char *pattern = (unsigned char *) bufp->buffer;
+ int size = bufp->used;
+ register char *fastmap = bufp->fastmap;
+ register unsigned char *p = pattern;
+ register unsigned char *pend = pattern + size;
+ register int j, k;
+ unsigned char *translate = (unsigned char *)bufp->translate;
+ unsigned is_a_succeed_n;
+
+ unsigned char **stackb;
+ unsigned char **stackp;
+ stackb = RE_TALLOC(NFAILURES, unsigned char*);
+ stackp = stackb;
+
+ memset(fastmap, 0, (1 << BYTEWIDTH));
+ bufp->fastmap_accurate = 1;
+ bufp->can_be_null = 0;
+
+ while (p)
+ {
+ is_a_succeed_n = 0;
+ if (p == pend)
+ {
+ bufp->can_be_null = 1;
+ break;
+ }
+#ifdef SWITCH_ENUM_BUG
+ switch ((int) ((enum regexpcode)*p++))
+#else
+ switch ((enum regexpcode)*p++)
+#endif
+ {
+ case exactn:
+ if (p[1] == 0xff) {
+ if (translate)
+ fastmap[translate[p[2]]] = 2;
+ else
+ fastmap[p[2]] = 2;
+ }
+ else if (translate)
+ fastmap[translate[p[1]]] = 1;
+ else
+ fastmap[p[1]] = 1;
+ break;
+
+ case begline:
+ case wordbound:
+ case notwordbound:
+ continue;
+
+ case endline:
+ if (translate)
+ fastmap[translate['\n']] = 1;
+ else
+ fastmap['\n'] = 1;
+
+ if (bufp->can_be_null == 0)
+ bufp->can_be_null = 2;
+ break;
+
+ case jump_n:
+ case finalize_jump:
+ case maybe_finalize_jump:
+ case jump:
+ case dummy_failure_jump:
+ EXTRACT_NUMBER_AND_INCR(j, p);
+ p += j;
+ if (j > 0)
+ continue;
+ /* Jump backward reached implies we just went through
+ the body of a loop and matched nothing.
+ Opcode jumped to should be an on_failure_jump.
+ Just treat it like an ordinary jump.
+ For a * loop, it has pushed its failure point already;
+ If so, discard that as redundant. */
+
+ if ((enum regexpcode) *p != on_failure_jump
+ && (enum regexpcode) *p != succeed_n)
+ continue;
+ p++;
+ EXTRACT_NUMBER_AND_INCR(j, p);
+ p += j;
+ if (stackp != stackb && *stackp == p)
+ stackp--;
+ continue;
+
+ case on_failure_jump:
+ handle_on_failure_jump:
+ EXTRACT_NUMBER_AND_INCR(j, p);
+ *++stackp = p + j;
+ if (is_a_succeed_n)
+ EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */
+ continue;
+
+ case succeed_n:
+ is_a_succeed_n = 1;
+ /* Get to the number of times to succeed. */
+ p += 2;
+ /* Increment p past the n for when k != 0. */
+ EXTRACT_NUMBER_AND_INCR(k, p);
+ if (k == 0)
+ {
+ p -= 4;
+ goto handle_on_failure_jump;
+ }
+ continue;
+
+ case set_number_at:
+ p += 4;
+ continue;
+
+ case start_memory:
+ case stop_memory:
+ p++;
+ continue;
+
+ case duplicate:
+ bufp->can_be_null = 1;
+ fastmap['\n'] = 1;
+ case anychar:
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (j != '\n')
+ fastmap[j] = 1;
+ if (bufp->can_be_null)
+ {
+ FREE_AND_RETURN_VOID(stackb);
+ }
+ /* Don't return; check the alternative paths
+ so we can set can_be_null if appropriate. */
+ break;
+
+ case wordchar:
+ for (j = 0; j < (1 << BYTEWIDTH); j++)
+ if (SYNTAX(j) == Sword)
+ fastmap[j] = 1;
+ break;
+
+ case notwordchar:
+ for (j = 0; j < 0x80; j++)
+ if (SYNTAX(j) != Sword)
+ fastmap[j] = 1;
+ for (j = 0x80; j < (1 << BYTEWIDTH); j++)
+ fastmap[j] = 1;
+ break;
+
+ case charset:
+ /* NOTE: Charset for single-byte chars never contain
+ multi-byte char. See set_list_bits(). */
+ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
+ {
+ if (translate)
+ fastmap[translate[j]] = 1;
+ else
+ fastmap[j] = 1;
+ }
+ {
+ unsigned short size;
+ unsigned c, end;
+
+ p += p[-1] + 2;
+ size = EXTRACT_UNSIGNED(&p[-2]);
+ for (j = 0; j < (int)size; j++) {
+ if ((unsigned char)p[j*4] == 0xff) {
+ for (c = (unsigned char)p[j*4+1],
+ end = (unsigned char)p[j*4+3];
+ c <= end; c++) {
+ fastmap[c] = 2;
+ }
+ }
+ else {
+ /* set bits for 1st bytes of multi-byte chars. */
+ for (c = (unsigned char)p[j*4],
+ end = (unsigned char)p[j*4 + 2];
+ c <= end; c++) {
+ /* NOTE: Charset for multi-byte chars might contain
+ single-byte chars. We must reject them. */
+ if (ismbchar(c))
+ fastmap[c] = 1;
+ }
+ }
+ }
+ }
+ break;
+
+ case charset_not:
+ /* S: set of all single-byte chars.
+ M: set of all first bytes that can start multi-byte chars.
+ s: any set of single-byte chars.
+ m: any set of first bytes that can start multi-byte chars.
+
+ We assume S+M = U.
+ ___ _ _
+ s+m = (S*s+M*m). */
+ /* Chars beyond end of map must be allowed */
+ /* NOTE: Charset_not for single-byte chars might contain
+ multi-byte chars. See set_list_bits(). */
+ for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
+ if (!ismbchar(j))
+ fastmap[j] = 1;
+
+ for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
+ if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
+ {
+ if (!ismbchar(j))
+ fastmap[j] = 1;
+ }
+ {
+ unsigned short size;
+ unsigned char c, beg;
+
+ p += p[-1] + 2;
+ size = EXTRACT_UNSIGNED(&p[-2]);
+ if (size == 0) {
+ for (j = 0x80; j < (1 << BYTEWIDTH); j++)
+ if (ismbchar(j))
+ fastmap[j] = 1;
+ }
+ for (j = 0,c = 0x80;j < (int)size; j++) {
+ if ((unsigned char)p[j*4] == 0xff) {
+ for (beg = (unsigned char)p[j*4+1]; c < beg; c++)
+ fastmap[c] = 2;
+ c = (unsigned char)p[j*4+3] + 1;
+ }
+ else {
+ for (beg = (unsigned char)p[j*4 + 0]; c < beg; c++)
+ if (ismbchar(c))
+ fastmap[c] = 1;
+ c = (unsigned char)p[j*4 + 2] + 1;
+ }
+ }
+ }
+ break;
+
+ case unused: /* pacify gcc -Wall */
+ break;
+ }
+
+ /* Get here means we have successfully found the possible starting
+ characters of one path of the pattern. We need not follow this
+ path any farther. Instead, look at the next alternative
+ remembered in the stack. */
+ if (stackp != stackb)
+ p = *stackp--;
+ else
+ break;
+ }
+ FREE_AND_RETURN_VOID(stackb);
+}
+
+
+
+
+/* Using the compiled pattern in BUFP->buffer, first tries to match
+ STRING, starting first at index STARTPOS, then at STARTPOS + 1, and
+ so on. RANGE is the number of places to try before giving up. If
+ RANGE is negative, it searches backwards, i.e., the starting
+ positions tried are STARTPOS, STARTPOS - 1, etc. STRING is of SIZE.
+ In REGS, return the indices of STRING that matched the entire
+ BUFP->buffer and its contained subexpressions.
+
+ The value returned is the position in the strings at which the match
+ was found, or -1 if no match was found, or -2 if error (such as
+ failure stack overflow). */
+
+int
+re_search(bufp, string, size, startpos, range, regs)
+ struct re_pattern_buffer *bufp;
+ char *string;
+ int size, startpos, range;
+ struct re_registers *regs;
+{
+ register char *fastmap = bufp->fastmap;
+ register unsigned char *translate = (unsigned char *) bufp->translate;
+ int val, anchor = 0;
+
+ /* Check for out-of-range starting position. */
+ if (startpos < 0 || startpos > size)
+ return -1;
+
+ /* Update the fastmap now if not correct already. */
+ if (fastmap && !bufp->fastmap_accurate) {
+ re_compile_fastmap (bufp);
+ }
+
+ if (bufp->used > 0 && (enum regexpcode)bufp->buffer[0] == begline)
+ anchor = 1;
+
+ for (;;)
+ {
+ /* If a fastmap is supplied, skip quickly over characters that
+ cannot possibly be the start of a match. Note, however, that
+ if the pattern can possibly match the null string, we must
+ test it at each starting point so that we take the first null
+ string we get. */
+
+ if (fastmap && startpos < size
+ && bufp->can_be_null != 1 && !(anchor && startpos == 0))
+ {
+ if (range > 0) /* Searching forwards. */
+ {
+ register int lim = 0;
+ register unsigned char *p, c;
+ int irange = range;
+
+ lim = range - (size - startpos);
+ p = (unsigned char *)&(string[startpos]);
+
+ while (range > lim) {
+ c = *p++;
+ if (ismbchar(c)) {
+ if (fastmap[c])
+ break;
+ c = *p++;
+ range--;
+ if (fastmap[c] == 2)
+ break;
+ }
+ else
+ if (fastmap[translate ? translate[c] : c])
+ break;
+ range--;
+ }
+ startpos += irange - range;
+ }
+ else /* Searching backwards. */
+ {
+ register unsigned char c;
+
+ c = string[startpos];
+ c &= 0xff;
+ if (translate ? !fastmap[translate[c]] : !fastmap[c])
+ goto advance;
+ }
+ }
+
+ if (anchor && startpos > 0 && startpos < size
+ && string[startpos-1] != '\n') goto advance;
+
+ if (fastmap && startpos == size && range >= 0
+ && (bufp->can_be_null == 0 ||
+ (bufp->can_be_null == 2 && size > 0
+ && string[startpos-1] == '\n')))
+ return -1;
+
+ val = re_match(bufp, string, size, startpos, regs);
+ if (val >= 0)
+ return startpos;
+ if (val == -2)
+ return -2;
+
+#ifndef NO_ALLOCA
+#ifdef cALLOCA
+ alloca(0);
+#endif /* cALLOCA */
+
+#endif /* NO_ALLOCA */
+ advance:
+ if (!range)
+ break;
+ else if (range > 0) {
+ const char *d = string + startpos;
+
+ if (ismbchar(*d)) {
+ range--, startpos++;
+ if (!range)
+ break;
+ }
+ range--, startpos++;
+ }
+ else {
+ range++, startpos--;
+ {
+ const char *s, *d, *p;
+
+ s = string; d = string + startpos;
+ for (p = d; p-- > s && ismbchar(*p); )
+ /* --p >= s would not work on 80[12]?86.
+ (when the offset of s equals 0 other than huge model.) */
+ ;
+ if (!((d - p) & 1)) {
+ if (!range)
+ break;
+ range++, startpos--;
+ }
+ }
+ }
+ }
+ return -1;
+}
+
+
+
+
+/* The following are used for re_match, defined below: */
+
+/* Roughly the maximum number of failure points on the stack. Would be
+ exactly that if always pushed MAX_NUM_FAILURE_ITEMS each time we failed. */
+
+int re_max_failures = 2000;
+
+/* Routine used by re_match. */
+/* static int memcmp_translate(); *//* already declared */
+
+
+/* Structure and accessing macros used in re_match: */
+
+struct register_info
+{
+ unsigned is_active : 1;
+ unsigned matched_something : 1;
+};
+
+#define IS_ACTIVE(R) ((R).is_active)
+#define MATCHED_SOMETHING(R) ((R).matched_something)
+
+
+/* Macros used by re_match: */
+
+/* I.e., regstart, regend, and reg_info. */
+
+#define NUM_REG_ITEMS 3
+
+/* We push at most this many things on the stack whenever we
+ fail. The `+ 2' refers to PATTERN_PLACE and STRING_PLACE, which are
+ arguments to the PUSH_FAILURE_POINT macro. */
+
+#define MAX_NUM_FAILURE_ITEMS (num_regs * NUM_REG_ITEMS + 2)
+
+
+/* We push this many things on the stack whenever we fail. */
+
+#define NUM_FAILURE_ITEMS (last_used_reg * NUM_REG_ITEMS + 2)
+
+
+/* This pushes most of the information about the current state we will want
+ if we ever fail back to it. */
+
+#define PUSH_FAILURE_POINT(pattern_place, string_place) \
+ { \
+ long last_used_reg, this_reg; \
+ \
+ /* Find out how many registers are active or have been matched. \
+ (Aside from register zero, which is only set at the end.) */ \
+ for (last_used_reg = num_regs - 1; last_used_reg > 0; last_used_reg--)\
+ if (regstart[last_used_reg] != (unsigned char *)(-1L)) \
+ break; \
+ \
+ if (stacke - stackp <= NUM_FAILURE_ITEMS) \
+ { \
+ unsigned char **stackx; \
+ unsigned int len = stacke - stackb; \
+ if (len > re_max_failures * MAX_NUM_FAILURE_ITEMS) \
+ { \
+ FREE_VARIABLES(); \
+ FREE_AND_RETURN(stackb,(-2)); \
+ } \
+ \
+ /* Roughly double the size of the stack. */ \
+ stackx = DOUBLE_STACK(stackx,stackb,len); \
+ /* Rearrange the pointers. */ \
+ stackp = stackx + (stackp - stackb); \
+ stackb = stackx; \
+ stacke = stackb + 2 * len; \
+ } \
+ \
+ /* Now push the info for each of those registers. */ \
+ for (this_reg = 1; this_reg <= last_used_reg; this_reg++) \
+ { \
+ *stackp++ = regstart[this_reg]; \
+ *stackp++ = regend[this_reg]; \
+ *stackp++ = (unsigned char *)&reg_info[this_reg]; \
+ } \
+ \
+ /* Push how many registers we saved. */ \
+ *stackp++ = (unsigned char *)last_used_reg; \
+ \
+ *stackp++ = pattern_place; \
+ *stackp++ = string_place; \
+ }
+
+
+/* This pops what PUSH_FAILURE_POINT pushes. */
+
+#define POP_FAILURE_POINT() \
+ { \
+ int temp; \
+ stackp -= 2; /* Remove failure points. */ \
+ temp = (int) *--stackp; /* How many regs pushed. */ \
+ temp *= NUM_REG_ITEMS; /* How much to take off the stack. */ \
+ stackp -= temp; /* Remove the register info. */ \
+ }
+
+#define PREFETCH if (d == dend) goto fail
+
+/* Call this when have matched something; it sets `matched' flags for the
+ registers corresponding to the subexpressions of which we currently
+ are inside. */
+#define SET_REGS_MATCHED \
+ { unsigned this_reg; \
+ for (this_reg = 0; this_reg < num_regs; this_reg++) \
+ { \
+ if (IS_ACTIVE(reg_info[this_reg])) \
+ MATCHED_SOMETHING(reg_info[this_reg]) = 1; \
+ else \
+ MATCHED_SOMETHING(reg_info[this_reg]) = 0; \
+ } \
+ }
+
+#define AT_STRINGS_BEG (d == string)
+#define AT_STRINGS_END (d == dend)
+
+#define AT_WORD_BOUNDARY \
+ (AT_STRINGS_BEG || AT_STRINGS_END || IS_A_LETTER (d - 1) != IS_A_LETTER (d))
+
+/* We have two special cases to check for:
+ 1) if we're past the end of string1, we have to look at the first
+ character in string2;
+ 2) if we're before the beginning of string2, we have to look at the
+ last character in string1; we assume there is a string1, so use
+ this in conjunction with AT_STRINGS_BEG. */
+#define IS_A_LETTER(d) (SYNTAX(*(d)) == Sword)
+
+static void
+init_regs(regs, num_regs)
+ struct re_registers *regs;
+ unsigned num_regs;
+{
+ int i;
+
+ regs->num_regs = num_regs;
+ if (num_regs < RE_NREGS)
+ num_regs = RE_NREGS;
+
+ if (regs->allocated == 0) {
+ regs->beg = TMALLOC(num_regs, int);
+ regs->end = TMALLOC(num_regs, int);
+ regs->allocated = num_regs;
+ }
+ else if (regs->allocated < num_regs) {
+ TREALLOC(regs->beg, num_regs, int);
+ TREALLOC(regs->end, num_regs, int);
+ }
+ for (i=0; i<num_regs; i++) {
+ regs->beg[i] = regs->end[i] = -1;
+ }
+}
+
+/* Match the pattern described by BUFP against STRING, which is of
+ SIZE. Start the match at index POS in STRING. In REGS, return the
+ indices of STRING that matched the entire BUFP->buffer and its
+ contained subexpressions.
+
+ If bufp->fastmap is nonzero, then it had better be up to date.
+
+ The reason that the data to match are specified as two components
+ which are to be regarded as concatenated is so this function can be
+ used directly on the contents of an Emacs buffer.
+
+ -1 is returned if there is no match. -2 is returned if there is an
+ error (such as match stack overflow). Otherwise the value is the
+ length of the substring which was matched. */
+
+int
+re_match(bufp, string_arg, size, pos, regs)
+ struct re_pattern_buffer *bufp;
+ char *string_arg;
+ int size, pos;
+ struct re_registers *regs;
+{
+ register unsigned char *p = (unsigned char *) bufp->buffer;
+
+ /* Pointer to beyond end of buffer. */
+ register unsigned char *pend = p + bufp->used;
+
+ unsigned num_regs = bufp->re_nsub;
+
+ unsigned char *string = (unsigned char *) string_arg;
+
+ register unsigned char *d, *dend;
+ register int mcnt; /* Multipurpose. */
+ unsigned char *translate = (unsigned char *) bufp->translate;
+ unsigned is_a_jump_n = 0;
+
+ /* Failure point stack. Each place that can handle a failure further
+ down the line pushes a failure point on this stack. It consists of
+ restart, regend, and reg_info for all registers corresponding to the
+ subexpressions we're currently inside, plus the number of such
+ registers, and, finally, two char *'s. The first char * is where to
+ resume scanning the pattern; the second one is where to resume
+ scanning the strings. If the latter is zero, the failure point is a
+ ``dummy''; if a failure happens and the failure point is a dummy, it
+ gets discarded and the next next one is tried. */
+
+ unsigned char **stackb;
+ unsigned char **stackp;
+ unsigned char **stacke;
+
+
+ /* Information on the contents of registers. These are pointers into
+ the input strings; they record just what was matched (on this
+ attempt) by a subexpression part of the pattern, that is, the
+ regnum-th regstart pointer points to where in the pattern we began
+ matching and the regnum-th regend points to right after where we
+ stopped matching the regnum-th subexpression. (The zeroth register
+ keeps track of what the whole pattern matches.) */
+
+ unsigned char **regstart = RE_TALLOC(num_regs, unsigned char*);
+ unsigned char **regend = RE_TALLOC(num_regs, unsigned char*);
+
+ /* The is_active field of reg_info helps us keep track of which (possibly
+ nested) subexpressions we are currently in. The matched_something
+ field of reg_info[reg_num] helps us tell whether or not we have
+ matched any of the pattern so far this time through the reg_num-th
+ subexpression. These two fields get reset each time through any
+ loop their register is in. */
+
+ struct register_info *reg_info = RE_TALLOC(num_regs, struct register_info);
+
+ /* The following record the register info as found in the above
+ variables when we find a match better than any we've seen before.
+ This happens as we backtrack through the failure points, which in
+ turn happens only if we have not yet matched the entire string. */
+
+ unsigned best_regs_set = 0;
+ unsigned char **best_regstart = RE_TALLOC(num_regs, unsigned char*);
+ unsigned char **best_regend = RE_TALLOC(num_regs, unsigned char*);
+
+ if (regs) {
+ init_regs(regs, num_regs);
+ }
+
+
+ /* Initialize the stack. */
+ stackb = RE_TALLOC(MAX_NUM_FAILURE_ITEMS * NFAILURES, unsigned char*);
+ stackp = stackb;
+ stacke = &stackb[MAX_NUM_FAILURE_ITEMS * NFAILURES];
+
+#ifdef DEBUG_REGEX
+ fprintf (stderr, "Entering re_match(%s%s)\n", string1_arg, string2_arg);
+#endif
+
+ /* Initialize subexpression text positions to -1 to mark ones that no
+ \( or ( and \) or ) has been seen for. Also set all registers to
+ inactive and mark them as not having matched anything or ever
+ failed. */
+ for (mcnt = 0; mcnt < num_regs; mcnt++) {
+ regstart[mcnt] = regend[mcnt] = (unsigned char *) (-1L);
+ IS_ACTIVE(reg_info[mcnt]) = 0;
+ MATCHED_SOMETHING(reg_info[mcnt]) = 0;
+ }
+
+ /* Set up pointers to ends of strings.
+ Don't allow the second string to be empty unless both are empty. */
+
+
+ /* `p' scans through the pattern as `d' scans through the data. `dend'
+ is the end of the input string that `d' points within. `d' is
+ advanced into the following input string whenever necessary, but
+ this happens before fetching; therefore, at the beginning of the
+ loop, `d' can be pointing at the end of a string, but it cannot
+ equal string2. */
+
+ d = string + pos, dend = string + size;
+
+
+ /* This loops over pattern commands. It exits by returning from the
+ function if match is complete, or it drops through if match fails
+ at this starting point in the input data. */
+
+ while (1)
+ {
+#ifdef DEBUG_REGEX
+ fprintf(stderr,
+ "regex loop(%d): matching 0x%02d\n",
+ p - (unsigned char *) bufp->buffer,
+ *p);
+#endif
+ is_a_jump_n = 0;
+ /* End of pattern means we might have succeeded. */
+ if (p == pend)
+ {
+ /* If not end of string, try backtracking. Otherwise done. */
+ if (d != dend)
+ {
+ if (stackp != stackb)
+ {
+ /* More failure points to try. */
+
+ /* If exceeds best match so far, save it. */
+ if (! best_regs_set || (d > best_regend[0]))
+ {
+ best_regs_set = 1;
+ best_regend[0] = d; /* Never use regstart[0]. */
+
+ for (mcnt = 1; mcnt < num_regs; mcnt++)
+ {
+ best_regstart[mcnt] = regstart[mcnt];
+ best_regend[mcnt] = regend[mcnt];
+ }
+ }
+ goto fail;
+ }
+ /* If no failure points, don't restore garbage. */
+ else if (best_regs_set)
+ {
+ restore_best_regs:
+ /* Restore best match. */
+ d = best_regend[0];
+
+ for (mcnt = 0; mcnt < num_regs; mcnt++)
+ {
+ regstart[mcnt] = best_regstart[mcnt];
+ regend[mcnt] = best_regend[mcnt];
+ }
+ }
+ }
+
+ /* If caller wants register contents data back, convert it
+ to indices. */
+ if (regs)
+ {
+ regs->beg[0] = pos;
+ regs->end[0] = d - string;
+ for (mcnt = 1; mcnt < num_regs; mcnt++)
+ {
+ if (regend[mcnt] == (unsigned char *)(-1L))
+ {
+ regs->beg[mcnt] = -1;
+ regs->end[mcnt] = -1;
+ continue;
+ }
+ regs->beg[mcnt] = regstart[mcnt] - string;
+ regs->end[mcnt] = regend[mcnt] - string;
+ }
+ }
+ FREE_VARIABLES();
+ FREE_AND_RETURN(stackb, (d - pos - string));
+ }
+
+ /* Otherwise match next pattern command. */
+#ifdef SWITCH_ENUM_BUG
+ switch ((int)((enum regexpcode)*p++))
+#else
+ switch ((enum regexpcode)*p++)
+#endif
+ {
+
+ /* \( [or `(', as appropriate] is represented by start_memory,
+ \) by stop_memory. Both of those commands are followed by
+ a register number in the next byte. The text matched
+ within the \( and \) is recorded under that number. */
+ case start_memory:
+ regstart[*p] = d;
+ IS_ACTIVE(reg_info[*p]) = 1;
+ MATCHED_SOMETHING(reg_info[*p]) = 0;
+ p++;
+ break;
+
+ case stop_memory:
+ regend[*p] = d;
+ IS_ACTIVE(reg_info[*p]) = 0;
+
+ /* If just failed to match something this time around with a sub-
+ expression that's in a loop, try to force exit from the loop. */
+ if ((! MATCHED_SOMETHING(reg_info[*p])
+ || (enum regexpcode) p[-3] == start_memory)
+ && (p + 1) != pend)
+ {
+ register unsigned char *p2 = p + 1;
+ mcnt = 0;
+ switch (*p2++)
+ {
+ case jump_n:
+ is_a_jump_n = 1;
+ case finalize_jump:
+ case maybe_finalize_jump:
+ case jump:
+ case dummy_failure_jump:
+ EXTRACT_NUMBER_AND_INCR(mcnt, p2);
+ if (is_a_jump_n)
+ p2 += 2;
+ break;
+ }
+ p2 += mcnt;
+
+ /* If the next operation is a jump backwards in the pattern
+ to an on_failure_jump, exit from the loop by forcing a
+ failure after pushing on the stack the on_failure_jump's
+ jump in the pattern, and d. */
+ if (mcnt < 0 && (enum regexpcode) *p2++ == on_failure_jump)
+ {
+ EXTRACT_NUMBER_AND_INCR(mcnt, p2);
+ PUSH_FAILURE_POINT(p2 + mcnt, d);
+ goto fail;
+ }
+ }
+ p++;
+ break;
+
+ /* \<digit> has been turned into a `duplicate' command which is
+ followed by the numeric value of <digit> as the register number. */
+ case duplicate:
+ {
+ int regno = *p++; /* Get which register to match against */
+ register unsigned char *d2, *dend2;
+
+ /* Where in input to try to start matching. */
+ d2 = regstart[regno];
+
+ /* Where to stop matching; if both the place to start and
+ the place to stop matching are in the same string, then
+ set to the place to stop, otherwise, for now have to use
+ the end of the first string. */
+
+ dend2 = regend[regno];
+ while (1)
+ {
+ /* At end of register contents => success */
+ if (d2 == dend2) break;
+
+ /* If necessary, advance to next segment in data. */
+ PREFETCH;
+
+ /* How many characters left in this segment to match. */
+ mcnt = dend - d;
+
+ /* Want how many consecutive characters we can match in
+ one shot, so, if necessary, adjust the count. */
+ if (mcnt > dend2 - d2)
+ mcnt = dend2 - d2;
+
+ /* Compare that many; failure if mismatch, else move
+ past them. */
+ if (translate
+ ? memcmp_translate(d, d2, mcnt, translate)
+ : memcmp((char *)d, (char *)d2, mcnt))
+ goto fail;
+ d += mcnt, d2 += mcnt;
+ }
+ }
+ break;
+
+ case anychar:
+ PREFETCH;
+ /* Match anything but a newline, maybe even a null. */
+ if (ismbchar(*d)) {
+ if (d + 1 == dend || d[1] == '\n' || d[1] == '\0')
+ goto fail;
+ SET_REGS_MATCHED;
+ d += 2;
+ break;
+ }
+ if ((translate ? translate[*d] : *d) == '\n'
+ || ((re_syntax_options & RE_DOT_NOT_NULL)
+ && (translate ? translate[*d] : *d) == '\000'))
+ goto fail;
+ SET_REGS_MATCHED;
+ d++;
+ break;
+
+ case charset:
+ case charset_not:
+ {
+ int not; /* Nonzero for charset_not. */
+ int half; /* 2 if need to match latter half of mbc */
+ int c;
+
+ PREFETCH;
+ c = (unsigned char)*d;
+ if (ismbchar(c)) {
+ if (d + 1 != dend) {
+ c <<= 8;
+ c |= (unsigned char)d[1];
+ }
+ }
+ else if (translate)
+ c = (unsigned char)translate[c];
+
+ half = not = is_in_list(c, p);
+ if (*(p - 1) == (unsigned char)charset_not) {
+ not = !not;
+ }
+
+ p += 1 + *p + 2 + EXTRACT_UNSIGNED(&p[1 + *p])*4;
+
+ if (!not) goto fail;
+ SET_REGS_MATCHED;
+
+ d++;
+ if (half != 2 && d != dend && c >= 1 << BYTEWIDTH)
+ d++;
+ break;
+ }
+
+ case begline:
+ if (size == 0
+ || d == string
+ || (d && d[-1] == '\n'))
+ break;
+ else
+ goto fail;
+
+ case endline:
+ if (d == dend || *d == '\n')
+ break;
+ goto fail;
+
+ /* `or' constructs are handled by starting each alternative with
+ an on_failure_jump that points to the start of the next
+ alternative. Each alternative except the last ends with a
+ jump to the joining point. (Actually, each jump except for
+ the last one really jumps to the following jump, because
+ tensioning the jumps is a hassle.) */
+
+ /* The start of a stupid repeat has an on_failure_jump that points
+ past the end of the repeat text. This makes a failure point so
+ that on failure to match a repetition, matching restarts past
+ as many repetitions have been found with no way to fail and
+ look for another one. */
+
+ /* A smart repeat is similar but loops back to the on_failure_jump
+ so that each repetition makes another failure point. */
+
+ case on_failure_jump:
+ on_failure:
+ EXTRACT_NUMBER_AND_INCR(mcnt, p);
+ PUSH_FAILURE_POINT(p + mcnt, d);
+ break;
+
+ /* The end of a smart repeat has a maybe_finalize_jump back.
+ Change it either to a finalize_jump or an ordinary jump. */
+ case maybe_finalize_jump:
+ EXTRACT_NUMBER_AND_INCR(mcnt, p);
+ {
+ register unsigned char *p2 = p;
+ /* Compare what follows with the beginning of the repeat.
+ If we can establish that there is nothing that they would
+ both match, we can change to finalize_jump. */
+ while (p2 + 1 != pend
+ && (*p2 == (unsigned char)stop_memory
+ || *p2 == (unsigned char)start_memory))
+ p2 += 2; /* Skip over reg number. */
+ if (p2 == pend)
+ p[-3] = (unsigned char)finalize_jump;
+ else if (*p2 == (unsigned char)exactn
+ || *p2 == (unsigned char)endline)
+ {
+ register int c = *p2 == (unsigned char)endline ? '\n' : p2[2];
+ register unsigned char *p1 = p + mcnt;
+ /* p1[0] ... p1[2] are an on_failure_jump.
+ Examine what follows that. */
+ if (p1[3] == (unsigned char)exactn && p1[5] != c)
+ p[-3] = (unsigned char)finalize_jump;
+ else if (p1[3] == (unsigned char)charset
+ || p1[3] == (unsigned char)charset_not) {
+ int not;
+ if (ismbchar(c))
+ c = c << 8 | p2[3];
+ /* `is_in_list()' is TRUE if c would match */
+ /* That means it is not safe to finalize. */
+ not = is_in_list(c, p1 + 4);
+ if (p1[3] == (unsigned char)charset_not)
+ not = !not;
+ if (!not)
+ p[-3] = (unsigned char)finalize_jump;
+ }
+ }
+ }
+ p -= 2; /* Point at relative address again. */
+ if (p[-1] != (unsigned char)finalize_jump)
+ {
+ p[-1] = (unsigned char)jump;
+ goto nofinalize;
+ }
+ /* Note fall through. */
+
+ /* The end of a stupid repeat has a finalize_jump back to the
+ start, where another failure point will be made which will
+ point to after all the repetitions found so far. */
+
+ /* Take off failure points put on by matching on_failure_jump
+ because didn't fail. Also remove the register information
+ put on by the on_failure_jump. */
+ case finalize_jump:
+ POP_FAILURE_POINT();
+ /* Note fall through. */
+
+ /* Jump without taking off any failure points. */
+ case jump:
+ nofinalize:
+ EXTRACT_NUMBER_AND_INCR(mcnt, p);
+ p += mcnt;
+ break;
+
+ case dummy_failure_jump:
+ /* Normally, the on_failure_jump pushes a failure point, which
+ then gets popped at finalize_jump. We will end up at
+ finalize_jump, also, and with a pattern of, say, `a+', we
+ are skipping over the on_failure_jump, so we have to push
+ something meaningless for finalize_jump to pop. */
+ PUSH_FAILURE_POINT(0, 0);
+ goto nofinalize;
+
+
+ /* Have to succeed matching what follows at least n times. Then
+ just handle like an on_failure_jump. */
+ case succeed_n:
+ EXTRACT_NUMBER(mcnt, p + 2);
+ /* Originally, this is how many times we HAVE to succeed. */
+ if (mcnt)
+ {
+ mcnt--;
+ p += 2;
+ STORE_NUMBER_AND_INCR(p, mcnt);
+ }
+ else if (mcnt == 0)
+ {
+ p[2] = unused;
+ p[3] = unused;
+ goto on_failure;
+ }
+ else
+ {
+ fprintf(stderr, "regex: the succeed_n's n is not set.\n");
+ exit(1);
+ }
+ break;
+
+ case jump_n:
+ EXTRACT_NUMBER(mcnt, p + 2);
+ /* Originally, this is how many times we CAN jump. */
+ if (mcnt)
+ {
+ mcnt--;
+ STORE_NUMBER(p + 2, mcnt);
+ goto nofinalize; /* Do the jump without taking off
+ any failure points. */
+ }
+ /* If don't have to jump any more, skip over the rest of command. */
+ else
+ p += 4;
+ break;
+
+ case set_number_at:
+ {
+ register unsigned char *p1;
+
+ EXTRACT_NUMBER_AND_INCR(mcnt, p);
+ p1 = p + mcnt;
+ EXTRACT_NUMBER_AND_INCR(mcnt, p);
+ STORE_NUMBER(p1, mcnt);
+ break;
+ }
+
+ /* Ignore these. Used to ignore the n of succeed_n's which
+ currently have n == 0. */
+ case unused:
+ break;
+
+ case wordbound:
+ if (AT_WORD_BOUNDARY)
+ break;
+ goto fail;
+
+ case notwordbound:
+ if (AT_WORD_BOUNDARY)
+ goto fail;
+ break;
+
+ case wordchar:
+ PREFETCH;
+ if (!IS_A_LETTER(d))
+ goto fail;
+ d++;
+ SET_REGS_MATCHED;
+ break;
+
+ case notwordchar:
+ PREFETCH;
+ if (IS_A_LETTER(d))
+ goto fail;
+ if (ismbchar(*d) && d + 1 != dend)
+ d++;
+ d++;
+ SET_REGS_MATCHED;
+ break;
+
+ case exactn:
+ /* Match the next few pattern characters exactly.
+ mcnt is how many characters to match. */
+ mcnt = *p++;
+ /* This is written out as an if-else so we don't waste time
+ testing `translate' inside the loop. */
+ if (translate)
+ {
+ do
+ {
+ unsigned char c;
+
+ PREFETCH;
+ c = *d++;
+ if (*p == 0xff) {
+ p++;
+ if (!--mcnt
+ || d == dend
+ || (unsigned char)*d++ != (unsigned char)*p++)
+ goto fail;
+ continue;
+ }
+ else if (ismbchar(c)) {
+ if (c != (unsigned char)*p++
+ || !--mcnt /* redundant check if pattern was
+ compiled properly. */
+ || d == dend
+ || (unsigned char)*d++ != (unsigned char)*p++)
+ goto fail;
+ continue;
+ }
+ /* compiled code translation needed for ruby */
+ if ((unsigned char)translate[c]
+ != (unsigned char)translate[*p++])
+ goto fail;
+ }
+ while (--mcnt);
+ }
+ else
+ {
+ do
+ {
+ PREFETCH;
+ if (*p == 0xff) {p++; mcnt--;}
+ if (*d++ != *p++) goto fail;
+ }
+ while (--mcnt);
+ }
+ SET_REGS_MATCHED;
+ break;
+ }
+ continue; /* Successfully executed one pattern command; keep going. */
+
+ /* Jump here if any matching operation fails. */
+ fail:
+ if (stackp != stackb)
+ /* A restart point is known. Restart there and pop it. */
+ {
+ short last_used_reg, this_reg;
+
+ /* If this failure point is from a dummy_failure_point, just
+ skip it. */
+ if (!stackp[-2])
+ {
+ POP_FAILURE_POINT();
+ goto fail;
+ }
+
+ d = *--stackp;
+ p = *--stackp;
+ /* Restore register info. */
+ last_used_reg = (long) *--stackp;
+
+ /* Make the ones that weren't saved -1 or 0 again. */
+ for (this_reg = num_regs - 1; this_reg > last_used_reg; this_reg--)
+ {
+ regend[this_reg] = (unsigned char *)(-1L);
+ regstart[this_reg] = (unsigned char *)(-1L);
+ IS_ACTIVE(reg_info[this_reg]) = 0;
+ MATCHED_SOMETHING(reg_info[this_reg]) = 0;
+ }
+
+ /* And restore the rest from the stack. */
+ for ( ; this_reg > 0; this_reg--)
+ {
+ reg_info[this_reg] = *(struct register_info *) *--stackp;
+ regend[this_reg] = *--stackp;
+ regstart[this_reg] = *--stackp;
+ }
+ }
+ else
+ break; /* Matching at this starting point really fails. */
+ }
+
+ if (best_regs_set)
+ goto restore_best_regs;
+
+ FREE_AND_RETURN(stackb,(-1)); /* Failure to match. */
+}
+
+
+static int
+memcmp_translate(s1, s2, len, translate)
+ unsigned char *s1, *s2;
+ register int len;
+ unsigned char *translate;
+{
+ register unsigned char *p1 = s1, *p2 = s2, c;
+ while (len)
+ {
+ c = *p1++;
+ if (ismbchar(c)) {
+ if (c != *p2++ || !--len || *p1++ != *p2++)
+ return 1;
+ }
+ else
+ if (translate[c] != translate[*p2++])
+ return 1;
+ len--;
+ }
+ return 0;
+}
+
+void
+re_copy_registers(regs1, regs2)
+ struct re_registers *regs1, *regs2;
+{
+ int i;
+
+ if (regs1 == regs2) return;
+ if (regs1->allocated == 0) {
+ regs1->beg = TMALLOC(regs2->num_regs, int);
+ regs1->end = TMALLOC(regs2->num_regs, int);
+ regs1->allocated = regs2->num_regs;
+ }
+ else if (regs1->allocated < regs2->num_regs) {
+ TREALLOC(regs1->beg, regs2->num_regs, int);
+ TREALLOC(regs1->end, regs2->num_regs, int);
+ regs1->allocated = regs2->num_regs;
+ }
+ for (i=0; i<regs2->num_regs; i++) {
+ regs1->beg[i] = regs2->beg[i];
+ regs1->end[i] = regs2->end[i];
+ }
+ regs1->num_regs = regs2->num_regs;
+}
+
+void
+re_free_registers(regs)
+ struct re_registers *regs;
+{
+ if (regs->allocated == 0) return;
+ if (regs->beg) free(regs->beg);
+ if (regs->end) free(regs->end);
+}