summaryrefslogtreecommitdiff
path: root/rational.c
diff options
context:
space:
mode:
Diffstat (limited to 'rational.c')
-rw-r--r--rational.c225
1 files changed, 225 insertions, 0 deletions
diff --git a/rational.c b/rational.c
index e42abcfe20..f5a6d2655f 100644
--- a/rational.c
+++ b/rational.c
@@ -1354,6 +1354,141 @@ nurat_to_r(VALUE self)
return self;
}
+#define id_ceil rb_intern("ceil")
+#define f_ceil(x) rb_funcall(x, id_ceil, 0)
+
+#define id_quo rb_intern("quo")
+#define f_quo(x,y) rb_funcall(x, id_quo, 1, y)
+
+#define f_reciprocal(x) f_quo(ONE, x)
+
+/*
+ The algorithm here is the method described in CLISP. Bruno Haible has
+ graciously given permission to use this algorithm. He says, "You can use
+ it, if you present the following explanation of the algorithm."
+
+ Algorithm (recursively presented):
+ If x is a rational number, return x.
+ If x = 0.0, return 0.
+ If x < 0.0, return (- (rationalize (- x))).
+ If x > 0.0:
+ Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
+ exponent, sign).
+ If m = 0 or e >= 0: return x = m*2^e.
+ Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
+ with smallest possible numerator and denominator.
+ Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
+ But in this case the result will be x itself anyway, regardless of
+ the choice of a. Therefore we can simply ignore this case.
+ Note 2: At first, we need to consider the closed interval [a,b].
+ but since a and b have the denominator 2^(|e|+1) whereas x itself
+ has a denominator <= 2^|e|, we can restrict the search to the open
+ interval (a,b).
+ So, for given a and b (0 < a < b) we are searching a rational number
+ y with a <= y <= b.
+ Recursive algorithm fraction_between(a,b):
+ c := (ceiling a)
+ if c < b
+ then return c ; because a <= c < b, c integer
+ else
+ ; a is not integer (otherwise we would have had c = a < b)
+ k := c-1 ; k = floor(a), k < a < b <= k+1
+ return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
+ ; note 1 <= 1/(b-k) < 1/(a-k)
+
+ You can see that we are actually computing a continued fraction expansion.
+
+ Algorithm (iterative):
+ If x is rational, return x.
+ Call (integer-decode-float x). It returns a m,e,s (mantissa,
+ exponent, sign).
+ If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
+ Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
+ (positive and already in lowest terms because the denominator is a
+ power of two and the numerator is odd).
+ Start a continued fraction expansion
+ p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
+ Loop
+ c := (ceiling a)
+ if c >= b
+ then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
+ goto Loop
+ finally partial_quotient(c).
+ Here partial_quotient(c) denotes the iteration
+ i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
+ At the end, return s * (p[i]/q[i]).
+ This rational number is already in lowest terms because
+ p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
+*/
+
+static void
+nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q)
+{
+ VALUE c, k, t, p0, p1, p2, q0, q1, q2;
+
+ p0 = ZERO;
+ p1 = ONE;
+ q0 = ONE;
+ q1 = ZERO;
+
+ while (1) {
+ c = f_ceil(a);
+ if (f_lt_p(c, b))
+ break;
+ k = f_sub(c, ONE);
+ p2 = f_add(f_mul(k, p1), p0);
+ q2 = f_add(f_mul(k, q1), q0);
+ t = f_reciprocal(f_sub(b, k));
+ b = f_reciprocal(f_sub(a, k));
+ a = t;
+ p0 = p1;
+ q0 = q1;
+ p1 = p2;
+ q1 = q2;
+ }
+ *p = f_add(f_mul(c, p1), p0);
+ *q = f_add(f_mul(c, q1), q0);
+}
+
+/*
+ * call-seq:
+ * rat.rationalize -> self
+ * rat.rationalize(eps) -> rational
+ *
+ * Returns a simpler approximation of the value if an optional
+ * argument eps is given (rat-|eps| <= result <= rat+|eps|), self
+ * otherwise.
+ *
+ * For example:
+ *
+ * r = Rational(5033165, 16777216)
+ * r.rationalize #=> (5033165/16777216)
+ * r.rationalize(Rational('0.01')) #=> (3/10)
+ * r.rationalize(Rational('0.1')) #=> (1/3)
+ */
+static VALUE
+nurat_rationalize(int argc, VALUE *argv, VALUE self)
+{
+ VALUE e, a, b, p, q;
+
+ if (argc == 0)
+ return self;
+
+ if (f_negative_p(self))
+ return f_negate(nurat_rationalize(argc, argv, f_abs(self)));
+
+ rb_scan_args(argc, argv, "01", &e);
+ e = f_abs(e);
+ a = f_sub(self, e);
+ b = f_add(self, e);
+
+ if (f_eqeq_p(a, b))
+ return self;
+
+ nurat_rationalize_internal(a, b, &p, &q);
+ return f_rational_new2(CLASS_OF(self), p, q);
+}
+
/* :nodoc: */
static VALUE
nurat_hash(VALUE self)
@@ -1653,6 +1788,20 @@ nilclass_to_r(VALUE self)
/*
* call-seq:
+ * nil.rationalize([eps]) -> (0/1)
+ *
+ * Returns zero as a rational. An optional argument eps is always
+ * ignored.
+ */
+static VALUE
+nilclass_rationalize(int argc, VALUE *argv, VALUE self)
+{
+ rb_scan_args(argc, argv, "01", NULL);
+ return nilclass_to_r(self);
+}
+
+/*
+ * call-seq:
* int.to_r -> rational
*
* Returns the value as a rational.
@@ -1668,6 +1817,20 @@ integer_to_r(VALUE self)
return rb_rational_new1(self);
}
+/*
+ * call-seq:
+ * int.rationalize([eps]) -> rational
+ *
+ * Returns the value as a rational. An optional argument eps is
+ * always ignored.
+ */
+static VALUE
+integer_rationalize(int argc, VALUE *argv, VALUE self)
+{
+ rb_scan_args(argc, argv, "01", NULL);
+ return integer_to_r(self);
+}
+
static void
float_decode_internal(VALUE self, VALUE *rf, VALUE *rn)
{
@@ -1733,6 +1896,64 @@ float_to_r(VALUE self)
#endif
}
+/*
+ * call-seq:
+ * flt.rationalize([eps]) -> rational
+ *
+ * Returns a simpler approximation of the value (flt-|eps| <= result
+ * <= flt+|eps|). if eps is not given, it will be chosen
+ * automatically.
+ *
+ * For example:
+ *
+ * 0.3.rationalize #=> (3/10)
+ * 1.333.rationalize #=> (1333/1000)
+ * 1.333.rationalize(0.01) #=> (4/3)
+ */
+static VALUE
+float_rationalize(int argc, VALUE *argv, VALUE self)
+{
+ VALUE e, a, b, p, q;
+
+ if (f_negative_p(self))
+ return f_negate(float_rationalize(argc, argv, f_abs(self)));
+
+ rb_scan_args(argc, argv, "01", &e);
+
+ if (argc != 0) {
+ e = f_abs(e);
+ a = f_sub(self, e);
+ b = f_add(self, e);
+ }
+ else {
+ VALUE f, n;
+
+ float_decode_internal(self, &f, &n);
+ if (f_zero_p(f) || f_positive_p(n))
+ return rb_rational_new1(f_lshift(f, n));
+
+#if FLT_RADIX == 2
+ a = rb_rational_new2(f_sub(f_mul(TWO, f), ONE),
+ f_lshift(ONE, f_sub(ONE, n)));
+ b = rb_rational_new2(f_add(f_mul(TWO, f), ONE),
+ f_lshift(ONE, f_sub(ONE, n)));
+#else
+ a = rb_rational_new2(f_sub(f_mul(INT2FIX(FLT_RADIX), f),
+ INT2FIX(FLT_RADIX - 1)),
+ f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
+ b = rb_rational_new2(f_add(f_mul(INT2FIX(FLT_RADIX), f),
+ INT2FIX(FLT_RADIX - 1)),
+ f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
+#endif
+ }
+
+ if (f_eqeq_p(a, b))
+ return f_to_r(self);
+
+ nurat_rationalize_internal(a, b, &p, &q);
+ return rb_rational_new2(p, q);
+}
+
static VALUE rat_pat, an_e_pat, a_dot_pat, underscores_pat, an_underscore;
#define WS "\\s*"
@@ -2101,6 +2322,7 @@ Init_Rational(void)
rb_define_method(rb_cRational, "to_i", nurat_truncate, 0);
rb_define_method(rb_cRational, "to_f", nurat_to_f, 0);
rb_define_method(rb_cRational, "to_r", nurat_to_r, 0);
+ rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1);
rb_define_method(rb_cRational, "hash", nurat_hash, 0);
@@ -2126,8 +2348,11 @@ Init_Rational(void)
rb_define_method(rb_cFloat, "denominator", float_denominator, 0);
rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0);
+ rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1);
rb_define_method(rb_cInteger, "to_r", integer_to_r, 0);
+ rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1);
rb_define_method(rb_cFloat, "to_r", float_to_r, 0);
+ rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1);
make_patterns();