summaryrefslogtreecommitdiff
path: root/prism/static_literals.c
diff options
context:
space:
mode:
Diffstat (limited to 'prism/static_literals.c')
-rw-r--r--prism/static_literals.c617
1 files changed, 617 insertions, 0 deletions
diff --git a/prism/static_literals.c b/prism/static_literals.c
new file mode 100644
index 0000000000..b8604321c9
--- /dev/null
+++ b/prism/static_literals.c
@@ -0,0 +1,617 @@
+#include "prism/static_literals.h"
+
+/**
+ * A small struct used for passing around a subset of the information that is
+ * stored on the parser. We use this to avoid having static literals explicitly
+ * depend on the parser struct.
+ */
+typedef struct {
+ /** The list of newline offsets to use to calculate line numbers. */
+ const pm_newline_list_t *newline_list;
+
+ /** The line number that the parser starts on. */
+ int32_t start_line;
+
+ /** The name of the encoding that the parser is using. */
+ const char *encoding_name;
+} pm_static_literals_metadata_t;
+
+static inline uint32_t
+murmur_scramble(uint32_t value) {
+ value *= 0xcc9e2d51;
+ value = (value << 15) | (value >> 17);
+ value *= 0x1b873593;
+ return value;
+}
+
+/**
+ * Murmur hash (https://en.wikipedia.org/wiki/MurmurHash) is a non-cryptographic
+ * general-purpose hash function. It is fast, which is what we care about in
+ * this case.
+ */
+static uint32_t
+murmur_hash(const uint8_t *key, size_t length) {
+ uint32_t hash = 0x9747b28c;
+ uint32_t segment;
+
+ for (size_t index = length >> 2; index; index--) {
+ memcpy(&segment, key, sizeof(uint32_t));
+ key += sizeof(uint32_t);
+ hash ^= murmur_scramble(segment);
+ hash = (hash << 13) | (hash >> 19);
+ hash = hash * 5 + 0xe6546b64;
+ }
+
+ segment = 0;
+ for (size_t index = length & 3; index; index--) {
+ segment <<= 8;
+ segment |= key[index - 1];
+ }
+
+ hash ^= murmur_scramble(segment);
+ hash ^= (uint32_t) length;
+ hash ^= hash >> 16;
+ hash *= 0x85ebca6b;
+ hash ^= hash >> 13;
+ hash *= 0xc2b2ae35;
+ hash ^= hash >> 16;
+ return hash;
+}
+
+/**
+ * Hash the value of an integer and return it.
+ */
+static uint32_t
+integer_hash(const pm_integer_t *integer) {
+ uint32_t hash;
+ if (integer->values) {
+ hash = murmur_hash((const uint8_t *) integer->values, sizeof(uint32_t) * integer->length);
+ } else {
+ hash = murmur_hash((const uint8_t *) &integer->value, sizeof(uint32_t));
+ }
+
+ if (integer->negative) {
+ hash ^= murmur_scramble((uint32_t) 1);
+ }
+
+ return hash;
+}
+
+/**
+ * Return the hash of the given node. It is important that nodes that have
+ * equivalent static literal values have the same hash. This is because we use
+ * these hashes to look for duplicates.
+ */
+static uint32_t
+node_hash(const pm_static_literals_metadata_t *metadata, const pm_node_t *node) {
+ switch (PM_NODE_TYPE(node)) {
+ case PM_INTEGER_NODE: {
+ // Integers hash their value.
+ const pm_integer_node_t *cast = (const pm_integer_node_t *) node;
+ return integer_hash(&cast->value);
+ }
+ case PM_SOURCE_LINE_NODE: {
+ // Source lines hash their line number.
+ const pm_line_column_t line_column = pm_newline_list_line_column(metadata->newline_list, node->location.start, metadata->start_line);
+ const int32_t *value = &line_column.line;
+ return murmur_hash((const uint8_t *) value, sizeof(int32_t));
+ }
+ case PM_FLOAT_NODE: {
+ // Floats hash their value.
+ const double *value = &((const pm_float_node_t *) node)->value;
+ return murmur_hash((const uint8_t *) value, sizeof(double));
+ }
+ case PM_RATIONAL_NODE: {
+ // Rationals hash their numerator and denominator.
+ const pm_rational_node_t *cast = (const pm_rational_node_t *) node;
+ return integer_hash(&cast->numerator) ^ integer_hash(&cast->denominator) ^ murmur_scramble((uint32_t) cast->base.type);
+ }
+ case PM_IMAGINARY_NODE: {
+ // Imaginaries hash their numeric value. Because their numeric value
+ // is stored as a subnode, we hash that node and then mix in the
+ // fact that this is an imaginary node.
+ const pm_node_t *numeric = ((const pm_imaginary_node_t *) node)->numeric;
+ return node_hash(metadata, numeric) ^ murmur_scramble((uint32_t) node->type);
+ }
+ case PM_STRING_NODE: {
+ // Strings hash their value and mix in their flags so that different
+ // encodings are not considered equal.
+ const pm_string_t *value = &((const pm_string_node_t *) node)->unescaped;
+
+ pm_node_flags_t flags = node->flags;
+ flags &= (PM_STRING_FLAGS_FORCED_BINARY_ENCODING | PM_STRING_FLAGS_FORCED_UTF8_ENCODING);
+
+ return murmur_hash(pm_string_source(value), pm_string_length(value) * sizeof(uint8_t)) ^ murmur_scramble((uint32_t) flags);
+ }
+ case PM_SOURCE_FILE_NODE: {
+ // Source files hash their value and mix in their flags so that
+ // different encodings are not considered equal.
+ const pm_string_t *value = &((const pm_source_file_node_t *) node)->filepath;
+ return murmur_hash(pm_string_source(value), pm_string_length(value) * sizeof(uint8_t));
+ }
+ case PM_REGULAR_EXPRESSION_NODE: {
+ // Regular expressions hash their value and mix in their flags so
+ // that different encodings are not considered equal.
+ const pm_string_t *value = &((const pm_regular_expression_node_t *) node)->unescaped;
+ return murmur_hash(pm_string_source(value), pm_string_length(value) * sizeof(uint8_t)) ^ murmur_scramble((uint32_t) node->flags);
+ }
+ case PM_SYMBOL_NODE: {
+ // Symbols hash their value and mix in their flags so that different
+ // encodings are not considered equal.
+ const pm_string_t *value = &((const pm_symbol_node_t *) node)->unescaped;
+ return murmur_hash(pm_string_source(value), pm_string_length(value) * sizeof(uint8_t)) ^ murmur_scramble((uint32_t) node->flags);
+ }
+ default:
+ assert(false && "unreachable");
+ return 0;
+ }
+}
+
+/**
+ * Insert a node into the node hash. It accepts the hash that should hold the
+ * new node, the parser that generated the node, the node to insert, and a
+ * comparison function. The comparison function is used for collision detection,
+ * and must be able to compare all node types that will be stored in this hash.
+ */
+static pm_node_t *
+pm_node_hash_insert(pm_node_hash_t *hash, const pm_static_literals_metadata_t *metadata, pm_node_t *node, bool replace, int (*compare)(const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right)) {
+ // If we are out of space, we need to resize the hash. This will cause all
+ // of the nodes to be rehashed and reinserted into the new hash.
+ if (hash->size * 2 >= hash->capacity) {
+ // First, allocate space for the new node list.
+ uint32_t new_capacity = hash->capacity == 0 ? 4 : hash->capacity * 2;
+ pm_node_t **new_nodes = xcalloc(new_capacity, sizeof(pm_node_t *));
+ if (new_nodes == NULL) return NULL;
+
+ // It turns out to be more efficient to mask the hash value than to use
+ // the modulo operator. Because our capacities are always powers of two,
+ // we can use a bitwise AND to get the same result as the modulo
+ // operator.
+ uint32_t mask = new_capacity - 1;
+
+ // Now, rehash all of the nodes into the new list.
+ for (uint32_t index = 0; index < hash->capacity; index++) {
+ pm_node_t *node = hash->nodes[index];
+
+ if (node != NULL) {
+ uint32_t index = node_hash(metadata, node) & mask;
+ new_nodes[index] = node;
+ }
+ }
+
+ // Finally, free the old node list and update the hash.
+ xfree(hash->nodes);
+ hash->nodes = new_nodes;
+ hash->capacity = new_capacity;
+ }
+
+ // Now, insert the node into the hash.
+ uint32_t mask = hash->capacity - 1;
+ uint32_t index = node_hash(metadata, node) & mask;
+
+ // We use linear probing to resolve collisions. This means that if the
+ // current index is occupied, we will move to the next index and try again.
+ // We are guaranteed that this will eventually find an empty slot because we
+ // resize the hash when it gets too full.
+ while (hash->nodes[index] != NULL) {
+ if (compare(metadata, hash->nodes[index], node) == 0) break;
+ index = (index + 1) & mask;
+ }
+
+ // If the current index is occupied, we need to return the node that was
+ // already in the hash. Otherwise, we can just increment the size and insert
+ // the new node.
+ pm_node_t *result = hash->nodes[index];
+
+ if (result == NULL) {
+ hash->size++;
+ hash->nodes[index] = node;
+ } else if (replace) {
+ hash->nodes[index] = node;
+ }
+
+ return result;
+}
+
+/**
+ * Free the internal memory associated with the given node hash.
+ */
+static void
+pm_node_hash_free(pm_node_hash_t *hash) {
+ if (hash->capacity > 0) xfree(hash->nodes);
+}
+
+/**
+ * Compare two values that can be compared with a simple numeric comparison.
+ */
+#define PM_NUMERIC_COMPARISON(left, right) ((left < right) ? -1 : (left > right) ? 1 : 0)
+
+/**
+ * Return the integer value of the given node as an int64_t.
+ */
+static int64_t
+pm_int64_value(const pm_static_literals_metadata_t *metadata, const pm_node_t *node) {
+ switch (PM_NODE_TYPE(node)) {
+ case PM_INTEGER_NODE: {
+ const pm_integer_t *integer = &((const pm_integer_node_t *) node)->value;
+ if (integer->values) return integer->negative ? INT64_MIN : INT64_MAX;
+
+ int64_t value = (int64_t) integer->value;
+ return integer->negative ? -value : value;
+ }
+ case PM_SOURCE_LINE_NODE:
+ return (int64_t) pm_newline_list_line_column(metadata->newline_list, node->location.start, metadata->start_line).line;
+ default:
+ assert(false && "unreachable");
+ return 0;
+ }
+}
+
+/**
+ * A comparison function for comparing two IntegerNode or SourceLineNode
+ * instances.
+ */
+static int
+pm_compare_integer_nodes(const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right) {
+ if (PM_NODE_TYPE_P(left, PM_SOURCE_LINE_NODE) || PM_NODE_TYPE_P(right, PM_SOURCE_LINE_NODE)) {
+ int64_t left_value = pm_int64_value(metadata, left);
+ int64_t right_value = pm_int64_value(metadata, right);
+ return PM_NUMERIC_COMPARISON(left_value, right_value);
+ }
+
+ const pm_integer_t *left_integer = &((const pm_integer_node_t *) left)->value;
+ const pm_integer_t *right_integer = &((const pm_integer_node_t *) right)->value;
+ return pm_integer_compare(left_integer, right_integer);
+}
+
+/**
+ * A comparison function for comparing two FloatNode instances.
+ */
+static int
+pm_compare_float_nodes(PRISM_ATTRIBUTE_UNUSED const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right) {
+ const double left_value = ((const pm_float_node_t *) left)->value;
+ const double right_value = ((const pm_float_node_t *) right)->value;
+ return PM_NUMERIC_COMPARISON(left_value, right_value);
+}
+
+/**
+ * A comparison function for comparing two nodes that have attached numbers.
+ */
+static int
+pm_compare_number_nodes(const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right) {
+ if (PM_NODE_TYPE(left) != PM_NODE_TYPE(right)) {
+ return PM_NUMERIC_COMPARISON(PM_NODE_TYPE(left), PM_NODE_TYPE(right));
+ }
+
+ switch (PM_NODE_TYPE(left)) {
+ case PM_IMAGINARY_NODE:
+ return pm_compare_number_nodes(metadata, ((const pm_imaginary_node_t *) left)->numeric, ((const pm_imaginary_node_t *) right)->numeric);
+ case PM_RATIONAL_NODE: {
+ const pm_rational_node_t *left_rational = (const pm_rational_node_t *) left;
+ const pm_rational_node_t *right_rational = (const pm_rational_node_t *) right;
+
+ int result = pm_integer_compare(&left_rational->denominator, &right_rational->denominator);
+ if (result != 0) return result;
+
+ return pm_integer_compare(&left_rational->numerator, &right_rational->numerator);
+ }
+ case PM_INTEGER_NODE:
+ return pm_compare_integer_nodes(metadata, left, right);
+ case PM_FLOAT_NODE:
+ return pm_compare_float_nodes(metadata, left, right);
+ default:
+ assert(false && "unreachable");
+ return 0;
+ }
+}
+
+/**
+ * Return a pointer to the string value of the given node.
+ */
+static const pm_string_t *
+pm_string_value(const pm_node_t *node) {
+ switch (PM_NODE_TYPE(node)) {
+ case PM_STRING_NODE:
+ return &((const pm_string_node_t *) node)->unescaped;
+ case PM_SOURCE_FILE_NODE:
+ return &((const pm_source_file_node_t *) node)->filepath;
+ case PM_SYMBOL_NODE:
+ return &((const pm_symbol_node_t *) node)->unescaped;
+ default:
+ assert(false && "unreachable");
+ return NULL;
+ }
+}
+
+/**
+ * A comparison function for comparing two nodes that have attached strings.
+ */
+static int
+pm_compare_string_nodes(PRISM_ATTRIBUTE_UNUSED const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right) {
+ const pm_string_t *left_string = pm_string_value(left);
+ const pm_string_t *right_string = pm_string_value(right);
+ return pm_string_compare(left_string, right_string);
+}
+
+/**
+ * A comparison function for comparing two RegularExpressionNode instances.
+ */
+static int
+pm_compare_regular_expression_nodes(PRISM_ATTRIBUTE_UNUSED const pm_static_literals_metadata_t *metadata, const pm_node_t *left, const pm_node_t *right) {
+ const pm_regular_expression_node_t *left_regexp = (const pm_regular_expression_node_t *) left;
+ const pm_regular_expression_node_t *right_regexp = (const pm_regular_expression_node_t *) right;
+
+ int result = pm_string_compare(&left_regexp->unescaped, &right_regexp->unescaped);
+ if (result != 0) return result;
+
+ return PM_NUMERIC_COMPARISON(left_regexp->base.flags, right_regexp->base.flags);
+}
+
+#undef PM_NUMERIC_COMPARISON
+
+/**
+ * Add a node to the set of static literals.
+ */
+pm_node_t *
+pm_static_literals_add(const pm_newline_list_t *newline_list, int32_t start_line, pm_static_literals_t *literals, pm_node_t *node, bool replace) {
+ switch (PM_NODE_TYPE(node)) {
+ case PM_INTEGER_NODE:
+ case PM_SOURCE_LINE_NODE:
+ return pm_node_hash_insert(
+ &literals->integer_nodes,
+ &(pm_static_literals_metadata_t) {
+ .newline_list = newline_list,
+ .start_line = start_line,
+ .encoding_name = NULL
+ },
+ node,
+ replace,
+ pm_compare_integer_nodes
+ );
+ case PM_FLOAT_NODE:
+ return pm_node_hash_insert(
+ &literals->float_nodes,
+ &(pm_static_literals_metadata_t) {
+ .newline_list = newline_list,
+ .start_line = start_line,
+ .encoding_name = NULL
+ },
+ node,
+ replace,
+ pm_compare_float_nodes
+ );
+ case PM_RATIONAL_NODE:
+ case PM_IMAGINARY_NODE:
+ return pm_node_hash_insert(
+ &literals->number_nodes,
+ &(pm_static_literals_metadata_t) {
+ .newline_list = newline_list,
+ .start_line = start_line,
+ .encoding_name = NULL
+ },
+ node,
+ replace,
+ pm_compare_number_nodes
+ );
+ case PM_STRING_NODE:
+ case PM_SOURCE_FILE_NODE:
+ return pm_node_hash_insert(
+ &literals->string_nodes,
+ &(pm_static_literals_metadata_t) {
+ .newline_list = newline_list,
+ .start_line = start_line,
+ .encoding_name = NULL
+ },
+ node,
+ replace,
+ pm_compare_string_nodes
+ );
+ case PM_REGULAR_EXPRESSION_NODE:
+ return pm_node_hash_insert(
+ &literals->regexp_nodes,
+ &(pm_static_literals_metadata_t) {
+ .newline_list = newline_list,
+ .start_line = start_line,
+ .encoding_name = NULL
+ },
+ node,
+ replace,
+ pm_compare_regular_expression_nodes
+ );
+ case PM_SYMBOL_NODE:
+ return pm_node_hash_insert(
+ &literals->symbol_nodes,
+ &(pm_static_literals_metadata_t) {
+ .newline_list = newline_list,
+ .start_line = start_line,
+ .encoding_name = NULL
+ },
+ node,
+ replace,
+ pm_compare_string_nodes
+ );
+ case PM_TRUE_NODE: {
+ pm_node_t *duplicated = literals->true_node;
+ if ((duplicated == NULL) || replace) literals->true_node = node;
+ return duplicated;
+ }
+ case PM_FALSE_NODE: {
+ pm_node_t *duplicated = literals->false_node;
+ if ((duplicated == NULL) || replace) literals->false_node = node;
+ return duplicated;
+ }
+ case PM_NIL_NODE: {
+ pm_node_t *duplicated = literals->nil_node;
+ if ((duplicated == NULL) || replace) literals->nil_node = node;
+ return duplicated;
+ }
+ case PM_SOURCE_ENCODING_NODE: {
+ pm_node_t *duplicated = literals->source_encoding_node;
+ if ((duplicated == NULL) || replace) literals->source_encoding_node = node;
+ return duplicated;
+ }
+ default:
+ return NULL;
+ }
+}
+
+/**
+ * Free the internal memory associated with the given static literals set.
+ */
+void
+pm_static_literals_free(pm_static_literals_t *literals) {
+ pm_node_hash_free(&literals->integer_nodes);
+ pm_node_hash_free(&literals->float_nodes);
+ pm_node_hash_free(&literals->number_nodes);
+ pm_node_hash_free(&literals->string_nodes);
+ pm_node_hash_free(&literals->regexp_nodes);
+ pm_node_hash_free(&literals->symbol_nodes);
+}
+
+/**
+ * A helper to determine if the given node is a static literal that is positive.
+ * This is used for formatting imaginary nodes.
+ */
+static bool
+pm_static_literal_positive_p(const pm_node_t *node) {
+ switch (PM_NODE_TYPE(node)) {
+ case PM_FLOAT_NODE:
+ return ((const pm_float_node_t *) node)->value > 0;
+ case PM_INTEGER_NODE:
+ return !((const pm_integer_node_t *) node)->value.negative;
+ case PM_RATIONAL_NODE:
+ return !((const pm_rational_node_t *) node)->numerator.negative;
+ case PM_IMAGINARY_NODE:
+ return pm_static_literal_positive_p(((const pm_imaginary_node_t *) node)->numeric);
+ default:
+ assert(false && "unreachable");
+ return false;
+ }
+}
+
+/**
+ * Create a string-based representation of the given static literal.
+ */
+static inline void
+pm_static_literal_inspect_node(pm_buffer_t *buffer, const pm_static_literals_metadata_t *metadata, const pm_node_t *node) {
+ switch (PM_NODE_TYPE(node)) {
+ case PM_FALSE_NODE:
+ pm_buffer_append_string(buffer, "false", 5);
+ break;
+ case PM_FLOAT_NODE: {
+ const double value = ((const pm_float_node_t *) node)->value;
+
+ if (isinf(value)) {
+ if (*node->location.start == '-') {
+ pm_buffer_append_byte(buffer, '-');
+ }
+ pm_buffer_append_string(buffer, "Infinity", 8);
+ } else if (value == 0.0) {
+ if (*node->location.start == '-') {
+ pm_buffer_append_byte(buffer, '-');
+ }
+ pm_buffer_append_string(buffer, "0.0", 3);
+ } else {
+ pm_buffer_append_format(buffer, "%g", value);
+
+ // %g will not insert a .0 for 1e100 (we'll get back 1e+100). So
+ // we check for the decimal point and add it in here if it's not
+ // present.
+ if (pm_buffer_index(buffer, '.') == SIZE_MAX) {
+ size_t exponent_index = pm_buffer_index(buffer, 'e');
+ size_t index = exponent_index == SIZE_MAX ? pm_buffer_length(buffer) : exponent_index;
+ pm_buffer_insert(buffer, index, ".0", 2);
+ }
+ }
+
+ break;
+ }
+ case PM_IMAGINARY_NODE: {
+ const pm_node_t *numeric = ((const pm_imaginary_node_t *) node)->numeric;
+ pm_buffer_append_string(buffer, "(0", 2);
+ if (pm_static_literal_positive_p(numeric)) pm_buffer_append_byte(buffer, '+');
+ pm_static_literal_inspect_node(buffer, metadata, numeric);
+ if (PM_NODE_TYPE_P(numeric, PM_RATIONAL_NODE)) {
+ pm_buffer_append_byte(buffer, '*');
+ }
+ pm_buffer_append_string(buffer, "i)", 2);
+ break;
+ }
+ case PM_INTEGER_NODE:
+ pm_integer_string(buffer, &((const pm_integer_node_t *) node)->value);
+ break;
+ case PM_NIL_NODE:
+ pm_buffer_append_string(buffer, "nil", 3);
+ break;
+ case PM_RATIONAL_NODE: {
+ const pm_rational_node_t *rational = (const pm_rational_node_t *) node;
+ pm_buffer_append_byte(buffer, '(');
+ pm_integer_string(buffer, &rational->numerator);
+ pm_buffer_append_byte(buffer, '/');
+ pm_integer_string(buffer, &rational->denominator);
+ pm_buffer_append_byte(buffer, ')');
+ break;
+ }
+ case PM_REGULAR_EXPRESSION_NODE: {
+ const pm_string_t *unescaped = &((const pm_regular_expression_node_t *) node)->unescaped;
+ pm_buffer_append_byte(buffer, '/');
+ pm_buffer_append_source(buffer, pm_string_source(unescaped), pm_string_length(unescaped), PM_BUFFER_ESCAPING_RUBY);
+ pm_buffer_append_byte(buffer, '/');
+
+ if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_MULTI_LINE)) pm_buffer_append_string(buffer, "m", 1);
+ if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_IGNORE_CASE)) pm_buffer_append_string(buffer, "i", 1);
+ if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_EXTENDED)) pm_buffer_append_string(buffer, "x", 1);
+ if (PM_NODE_FLAG_P(node, PM_REGULAR_EXPRESSION_FLAGS_ASCII_8BIT)) pm_buffer_append_string(buffer, "n", 1);
+
+ break;
+ }
+ case PM_SOURCE_ENCODING_NODE:
+ pm_buffer_append_format(buffer, "#<Encoding:%s>", metadata->encoding_name);
+ break;
+ case PM_SOURCE_FILE_NODE: {
+ const pm_string_t *filepath = &((const pm_source_file_node_t *) node)->filepath;
+ pm_buffer_append_byte(buffer, '"');
+ pm_buffer_append_source(buffer, pm_string_source(filepath), pm_string_length(filepath), PM_BUFFER_ESCAPING_RUBY);
+ pm_buffer_append_byte(buffer, '"');
+ break;
+ }
+ case PM_SOURCE_LINE_NODE:
+ pm_buffer_append_format(buffer, "%d", pm_newline_list_line_column(metadata->newline_list, node->location.start, metadata->start_line).line);
+ break;
+ case PM_STRING_NODE: {
+ const pm_string_t *unescaped = &((const pm_string_node_t *) node)->unescaped;
+ pm_buffer_append_byte(buffer, '"');
+ pm_buffer_append_source(buffer, pm_string_source(unescaped), pm_string_length(unescaped), PM_BUFFER_ESCAPING_RUBY);
+ pm_buffer_append_byte(buffer, '"');
+ break;
+ }
+ case PM_SYMBOL_NODE: {
+ const pm_string_t *unescaped = &((const pm_symbol_node_t *) node)->unescaped;
+ pm_buffer_append_byte(buffer, ':');
+ pm_buffer_append_source(buffer, pm_string_source(unescaped), pm_string_length(unescaped), PM_BUFFER_ESCAPING_RUBY);
+ break;
+ }
+ case PM_TRUE_NODE:
+ pm_buffer_append_string(buffer, "true", 4);
+ break;
+ default:
+ assert(false && "unreachable");
+ break;
+ }
+}
+
+/**
+ * Create a string-based representation of the given static literal.
+ */
+void
+pm_static_literal_inspect(pm_buffer_t *buffer, const pm_newline_list_t *newline_list, int32_t start_line, const char *encoding_name, const pm_node_t *node) {
+ pm_static_literal_inspect_node(
+ buffer,
+ &(pm_static_literals_metadata_t) {
+ .newline_list = newline_list,
+ .start_line = start_line,
+ .encoding_name = encoding_name
+ },
+ node
+ );
+}