summaryrefslogtreecommitdiff
path: root/numeric.c
diff options
context:
space:
mode:
Diffstat (limited to 'numeric.c')
-rw-r--r--numeric.c4838
1 files changed, 2829 insertions, 2009 deletions
diff --git a/numeric.c b/numeric.c
index caf7b8619f..f613d4120d 100644
--- a/numeric.c
+++ b/numeric.c
@@ -35,6 +35,7 @@
#include "internal/numeric.h"
#include "internal/object.h"
#include "internal/rational.h"
+#include "internal/string.h"
#include "internal/util.h"
#include "internal/variable.h"
#include "ruby/encoding.h"
@@ -94,12 +95,12 @@ round(double x)
double f;
if (x > 0.0) {
- f = floor(x);
- x = f + (x - f >= 0.5);
+ f = floor(x);
+ x = f + (x - f >= 0.5);
}
else if (x < 0.0) {
- f = ceil(x);
- x = f - (f - x >= 0.5);
+ f = ceil(x);
+ x = f - (f - x >= 0.5);
}
return x;
}
@@ -113,12 +114,12 @@ round_half_up(double x, double s)
f = round(xs);
if (s == 1.0) return f;
if (x > 0) {
- if ((double)((f + 0.5) / s) <= x) f += 1;
- x = f;
+ if ((double)((f + 0.5) / s) <= x) f += 1;
+ x = f;
}
else {
- if ((double)((f - 0.5) / s) >= x) f -= 1;
- x = f;
+ if ((double)((f - 0.5) / s) >= x) f -= 1;
+ x = f;
}
return x;
}
@@ -130,12 +131,12 @@ round_half_down(double x, double s)
f = round(xs);
if (x > 0) {
- if ((double)((f - 0.5) / s) >= x) f -= 1;
- x = f;
+ if ((double)((f - 0.5) / s) >= x) f -= 1;
+ x = f;
}
else {
- if ((double)((f + 0.5) / s) <= x) f += 1;
- x = f;
+ if ((double)((f + 0.5) / s) <= x) f += 1;
+ x = f;
}
return x;
}
@@ -143,31 +144,37 @@ round_half_down(double x, double s)
static double
round_half_even(double x, double s)
{
- double f, d, xs = x * s;
+ double u, v, us, vs, f, d, uf;
+
+ v = modf(x, &u);
+ us = u * s;
+ vs = v * s;
if (x > 0.0) {
- f = floor(xs);
- d = xs - f;
- if (d > 0.5)
- d = 1.0;
- else if (d == 0.5 || ((double)((f + 0.5) / s) <= x))
- d = fmod(f, 2.0);
- else
- d = 0.0;
- x = f + d;
+ f = floor(vs);
+ uf = us + f;
+ d = vs - f;
+ if (d > 0.5)
+ d = 1.0;
+ else if (d == 0.5 || ((double)((uf + 0.5) / s) <= x))
+ d = fmod(uf, 2.0);
+ else
+ d = 0.0;
+ x = f + d;
}
else if (x < 0.0) {
- f = ceil(xs);
- d = f - xs;
- if (d > 0.5)
- d = 1.0;
- else if (d == 0.5 || ((double)((f - 0.5) / s) >= x))
- d = fmod(-f, 2.0);
- else
- d = 0.0;
- x = f - d;
+ f = ceil(vs);
+ uf = us + f;
+ d = f - vs;
+ if (d > 0.5)
+ d = 1.0;
+ else if (d == 0.5 || ((double)((uf - 0.5) / s) >= x))
+ d = fmod(-uf, 2.0);
+ else
+ d = 0.0;
+ x = f - d;
}
- return x;
+ return us + x;
}
static VALUE fix_lshift(long, unsigned long);
@@ -210,36 +217,36 @@ rb_num_get_rounding_option(VALUE opts)
const char *s;
if (!NIL_P(opts)) {
- if (!round_kwds[0]) {
- round_kwds[0] = rb_intern_const("half");
- }
- if (!rb_get_kwargs(opts, round_kwds, 0, 1, &rounding)) goto noopt;
- if (SYMBOL_P(rounding)) {
- str = rb_sym2str(rounding);
- }
- else if (NIL_P(rounding)) {
- goto noopt;
- }
- else if (!RB_TYPE_P(str = rounding, T_STRING)) {
- str = rb_check_string_type(rounding);
- if (NIL_P(str)) goto invalid;
- }
+ if (!round_kwds[0]) {
+ round_kwds[0] = rb_intern_const("half");
+ }
+ if (!rb_get_kwargs(opts, round_kwds, 0, 1, &rounding)) goto noopt;
+ if (SYMBOL_P(rounding)) {
+ str = rb_sym2str(rounding);
+ }
+ else if (NIL_P(rounding)) {
+ goto noopt;
+ }
+ else if (!RB_TYPE_P(str = rounding, T_STRING)) {
+ str = rb_check_string_type(rounding);
+ if (NIL_P(str)) goto invalid;
+ }
rb_must_asciicompat(str);
- s = RSTRING_PTR(str);
- switch (RSTRING_LEN(str)) {
- case 2:
- if (rb_memcicmp(s, "up", 2) == 0)
- return RUBY_NUM_ROUND_HALF_UP;
- break;
- case 4:
- if (rb_memcicmp(s, "even", 4) == 0)
- return RUBY_NUM_ROUND_HALF_EVEN;
- if (strncasecmp(s, "down", 4) == 0)
- return RUBY_NUM_ROUND_HALF_DOWN;
- break;
- }
+ s = RSTRING_PTR(str);
+ switch (RSTRING_LEN(str)) {
+ case 2:
+ if (rb_memcicmp(s, "up", 2) == 0)
+ return RUBY_NUM_ROUND_HALF_UP;
+ break;
+ case 4:
+ if (rb_memcicmp(s, "even", 4) == 0)
+ return RUBY_NUM_ROUND_HALF_EVEN;
+ if (strncasecmp(s, "down", 4) == 0)
+ return RUBY_NUM_ROUND_HALF_DOWN;
+ break;
+ }
invalid:
- rb_raise(rb_eArgError, "invalid rounding mode: % "PRIsVALUE, rounding);
+ rb_raise(rb_eArgError, "invalid rounding mode: % "PRIsVALUE, rounding);
}
noopt:
return RUBY_NUM_ROUND_DEFAULT;
@@ -253,25 +260,25 @@ rb_num_to_uint(VALUE val, unsigned int *ret)
#define NUMERR_NEGATIVE 2
#define NUMERR_TOOLARGE 3
if (FIXNUM_P(val)) {
- long v = FIX2LONG(val);
+ long v = FIX2LONG(val);
#if SIZEOF_INT < SIZEOF_LONG
- if (v > (long)UINT_MAX) return NUMERR_TOOLARGE;
+ if (v > (long)UINT_MAX) return NUMERR_TOOLARGE;
#endif
- if (v < 0) return NUMERR_NEGATIVE;
- *ret = (unsigned int)v;
- return 0;
+ if (v < 0) return NUMERR_NEGATIVE;
+ *ret = (unsigned int)v;
+ return 0;
}
- if (RB_TYPE_P(val, T_BIGNUM)) {
- if (BIGNUM_NEGATIVE_P(val)) return NUMERR_NEGATIVE;
+ if (RB_BIGNUM_TYPE_P(val)) {
+ if (BIGNUM_NEGATIVE_P(val)) return NUMERR_NEGATIVE;
#if SIZEOF_INT < SIZEOF_LONG
- /* long is 64bit */
- return NUMERR_TOOLARGE;
+ /* long is 64bit */
+ return NUMERR_TOOLARGE;
#else
- /* long is 32bit */
- if (rb_absint_size(val, NULL) > sizeof(int)) return NUMERR_TOOLARGE;
- *ret = (unsigned int)rb_big2ulong((VALUE)val);
- return 0;
+ /* long is 32bit */
+ if (rb_absint_size(val, NULL) > sizeof(int)) return NUMERR_TOOLARGE;
+ *ret = (unsigned int)rb_big2ulong((VALUE)val);
+ return 0;
#endif
}
return NUMERR_TYPE;
@@ -283,10 +290,10 @@ static inline int
int_pos_p(VALUE num)
{
if (FIXNUM_P(num)) {
- return FIXNUM_POSITIVE_P(num);
+ return FIXNUM_POSITIVE_P(num);
}
- else if (RB_TYPE_P(num, T_BIGNUM)) {
- return BIGNUM_POSITIVE_P(num);
+ else if (RB_BIGNUM_TYPE_P(num)) {
+ return BIGNUM_POSITIVE_P(num);
}
rb_raise(rb_eTypeError, "not an Integer");
}
@@ -295,10 +302,10 @@ static inline int
int_neg_p(VALUE num)
{
if (FIXNUM_P(num)) {
- return FIXNUM_NEGATIVE_P(num);
+ return FIXNUM_NEGATIVE_P(num);
}
- else if (RB_TYPE_P(num, T_BIGNUM)) {
- return BIGNUM_NEGATIVE_P(num);
+ else if (RB_BIGNUM_TYPE_P(num)) {
+ return BIGNUM_NEGATIVE_P(num);
}
rb_raise(rb_eTypeError, "not an Integer");
}
@@ -326,19 +333,19 @@ num_funcall_op_0(VALUE x, VALUE arg, int recursive)
{
ID func = (ID)arg;
if (recursive) {
- const char *name = rb_id2name(func);
- if (ISALNUM(name[0])) {
- rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE,
- x, ID2SYM(func));
- }
- else if (name[0] && name[1] == '@' && !name[2]) {
- rb_name_error(func, "%c%"PRIsVALUE,
- name[0], x);
- }
- else {
- rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE,
- ID2SYM(func), x);
- }
+ const char *name = rb_id2name(func);
+ if (ISALNUM(name[0])) {
+ rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE,
+ x, ID2SYM(func));
+ }
+ else if (name[0] && name[1] == '@' && !name[2]) {
+ rb_name_error(func, "%c%"PRIsVALUE,
+ name[0], x);
+ }
+ else {
+ rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE,
+ ID2SYM(func), x);
+ }
}
return rb_funcallv(x, func, 0, 0);
}
@@ -356,12 +363,12 @@ num_funcall_op_1_recursion(VALUE x, ID func, VALUE y)
{
const char *name = rb_id2name(func);
if (ISALNUM(name[0])) {
- rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE"(%"PRIsVALUE")",
- x, ID2SYM(func), y);
+ rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE"(%"PRIsVALUE")",
+ x, ID2SYM(func), y);
}
else {
- rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE"%"PRIsVALUE,
- x, ID2SYM(func), y);
+ rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE"%"PRIsVALUE,
+ x, ID2SYM(func), y);
}
}
@@ -371,7 +378,7 @@ num_funcall_op_1(VALUE y, VALUE arg, int recursive)
ID func = (ID)((VALUE *)arg)[0];
VALUE x = ((VALUE *)arg)[1];
if (recursive) {
- num_funcall_op_1_recursion(x, func, y);
+ num_funcall_op_1_recursion(x, func, y);
}
return rb_funcall(x, func, 1, y);
}
@@ -387,26 +394,44 @@ num_funcall1(VALUE x, ID func, VALUE y)
/*
* call-seq:
- * num.coerce(numeric) -> array
+ * coerce(other) -> array
+ *
+ * Returns a 2-element array containing two numeric elements,
+ * formed from the two operands +self+ and +other+,
+ * of a common compatible type.
+ *
+ * Of the Core and Standard Library classes,
+ * Integer, Rational, and Complex use this implementation.
*
- * If +numeric+ is the same type as +num+, returns an array
- * <code>[numeric, num]</code>. Otherwise, returns an array with both
- * +numeric+ and +num+ represented as Float objects.
+ * Examples:
*
- * This coercion mechanism is used by Ruby to handle mixed-type numeric
- * operations: it is intended to find a compatible common type between the two
- * operands of the operator.
+ * i = 2 # => 2
+ * i.coerce(3) # => [3, 2]
+ * i.coerce(3.0) # => [3.0, 2.0]
+ * i.coerce(Rational(1, 2)) # => [0.5, 2.0]
+ * i.coerce(Complex(3, 4)) # Raises RangeError.
+ *
+ * r = Rational(5, 2) # => (5/2)
+ * r.coerce(2) # => [(2/1), (5/2)]
+ * r.coerce(2.0) # => [2.0, 2.5]
+ * r.coerce(Rational(2, 3)) # => [(2/3), (5/2)]
+ * r.coerce(Complex(3, 4)) # => [(3+4i), ((5/2)+0i)]
+ *
+ * c = Complex(2, 3) # => (2+3i)
+ * c.coerce(2) # => [(2+0i), (2+3i)]
+ * c.coerce(2.0) # => [(2.0+0i), (2+3i)]
+ * c.coerce(Rational(1, 2)) # => [((1/2)+0i), (2+3i)]
+ * c.coerce(Complex(3, 4)) # => [(3+4i), (2+3i)]
+ *
+ * Raises an exception if any type conversion fails.
*
- * 1.coerce(2.5) #=> [2.5, 1.0]
- * 1.2.coerce(3) #=> [3.0, 1.2]
- * 1.coerce(2) #=> [2, 1]
*/
static VALUE
num_coerce(VALUE x, VALUE y)
{
if (CLASS_OF(x) == CLASS_OF(y))
- return rb_assoc_new(y, x);
+ return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
@@ -417,30 +442,30 @@ static void
coerce_failed(VALUE x, VALUE y)
{
if (SPECIAL_CONST_P(y) || SYMBOL_P(y) || RB_FLOAT_TYPE_P(y)) {
- y = rb_inspect(y);
+ y = rb_inspect(y);
}
else {
- y = rb_obj_class(y);
+ y = rb_obj_class(y);
}
rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
- y, rb_obj_class(x));
+ y, rb_obj_class(x));
}
static int
do_coerce(VALUE *x, VALUE *y, int err)
{
VALUE ary = rb_check_funcall(*y, id_coerce, 1, x);
- if (ary == Qundef) {
- if (err) {
- coerce_failed(*x, *y);
- }
- return FALSE;
+ if (UNDEF_P(ary)) {
+ if (err) {
+ coerce_failed(*x, *y);
+ }
+ return FALSE;
}
if (!err && NIL_P(ary)) {
- return FALSE;
+ return FALSE;
}
if (!RB_TYPE_P(ary, T_ARRAY) || RARRAY_LEN(ary) != 2) {
- rb_raise(rb_eTypeError, "coerce must return [x, y]");
+ rb_raise(rb_eTypeError, "coerce must return [x, y]");
}
*x = RARRAY_AREF(ary, 0);
@@ -459,7 +484,7 @@ VALUE
rb_num_coerce_cmp(VALUE x, VALUE y, ID func)
{
if (do_coerce(&x, &y, FALSE))
- return rb_funcall(x, func, 1, y);
+ return rb_funcall(x, func, 1, y);
return Qnil;
}
@@ -476,8 +501,8 @@ rb_num_coerce_relop(VALUE x, VALUE y, ID func)
VALUE x0 = x, y0 = y;
if (!do_coerce(&x, &y, FALSE)) {
- rb_cmperr(x0, y0);
- UNREACHABLE_RETURN(Qnil);
+ rb_cmperr(x0, y0);
+ UNREACHABLE_RETURN(Qnil);
}
return ensure_cmp(rb_funcall(x, func, 1, y), x0, y0);
}
@@ -499,9 +524,9 @@ num_sadded(VALUE x, VALUE name)
/* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
rb_remove_method_id(rb_singleton_class(x), mid);
rb_raise(rb_eTypeError,
- "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
- rb_id2str(mid),
- rb_obj_class(x));
+ "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
+ rb_id2str(mid),
+ rb_obj_class(x));
UNREACHABLE_RETURN(Qnil);
}
@@ -509,9 +534,14 @@ num_sadded(VALUE x, VALUE name)
#if 0
/*
* call-seq:
- * num.clone(freeze: true) -> num
+ * clone(freeze: true) -> self
+ *
+ * Returns +self+.
+ *
+ * Raises an exception if the value for +freeze+ is neither +true+ nor +nil+.
+ *
+ * Related: Numeric#dup.
*
- * Returns the receiver. +freeze+ cannot be +false+.
*/
static VALUE
num_clone(int argc, VALUE *argv, VALUE x)
@@ -525,9 +555,12 @@ num_clone(int argc, VALUE *argv, VALUE x)
#if 0
/*
* call-seq:
- * num.dup -> num
+ * dup -> self
+ *
+ * Returns +self+.
+ *
+ * Related: Numeric#clone.
*
- * Returns the receiver.
*/
static VALUE
num_dup(VALUE x)
@@ -540,9 +573,10 @@ num_dup(VALUE x)
/*
* call-seq:
- * +num -> num
+ * +self -> self
+ *
+ * Returns +self+.
*
- * Unary Plus---Returns the receiver.
*/
static VALUE
@@ -553,13 +587,16 @@ num_uplus(VALUE num)
/*
* call-seq:
- * num.i -> Complex(0, num)
+ * i -> complex
*
- * Returns the corresponding imaginary number.
- * Not available for complex numbers.
+ * Returns <tt>Complex(0, self)</tt>:
+ *
+ * 2.i # => (0+2i)
+ * -2.i # => (0-2i)
+ * 2.0.i # => (0+2.0i)
+ * Rational(1, 2).i # => (0+(1/2)*i)
+ * Complex(3, 4).i # Raises NoMethodError.
*
- * -42.i #=> (0-42i)
- * 2.0.i #=> (0+2.0i)
*/
static VALUE
@@ -570,7 +607,7 @@ num_imaginary(VALUE num)
/*
* call-seq:
- * -num -> numeric
+ * -self -> numeric
*
* Unary Minus---Returns the receiver, negated.
*/
@@ -588,9 +625,15 @@ num_uminus(VALUE num)
/*
* call-seq:
- * num.fdiv(numeric) -> float
+ * fdiv(other) -> float
+ *
+ * Returns the quotient <tt>self/other</tt> as a float,
+ * using method +/+ in the derived class of +self+.
+ * (\Numeric itself does not define method +/+.)
+ *
+ * Of the Core and Standard Library classes,
+ * only BigDecimal uses this implementation.
*
- * Returns float division.
*/
static VALUE
@@ -601,14 +644,15 @@ num_fdiv(VALUE x, VALUE y)
/*
* call-seq:
- * num.div(numeric) -> integer
+ * div(other) -> integer
*
- * Uses +/+ to perform division, then converts the result to an integer.
- * Numeric does not define the +/+ operator; this is left to subclasses.
+ * Returns the quotient <tt>self/other</tt> as an integer (via +floor+),
+ * using method +/+ in the derived class of +self+.
+ * (\Numeric itself does not define method +/+.)
*
- * Equivalent to <code>num.divmod(numeric)[0]</code>.
+ * Of the Core and Standard Library classes,
+ * Only Float and Rational use this implementation.
*
- * See Numeric#divmod.
*/
static VALUE
@@ -620,13 +664,36 @@ num_div(VALUE x, VALUE y)
/*
* call-seq:
- * num.modulo(numeric) -> real
+ * self % other -> real_numeric
+ *
+ * Returns +self+ modulo +other+ as a real number.
*
- * <code>x.modulo(y)</code> means <code>x-y*(x/y).floor</code>.
+ * Of the Core and Standard Library classes,
+ * only Rational uses this implementation.
*
- * Equivalent to <code>num.divmod(numeric)[1]</code>.
+ * For Rational +r+ and real number +n+, these expressions are equivalent:
+ *
+ * r % n
+ * r-n*(r/n).floor
+ * r.divmod(n)[1]
*
* See Numeric#divmod.
+ *
+ * Examples:
+ *
+ * r = Rational(1, 2) # => (1/2)
+ * r2 = Rational(2, 3) # => (2/3)
+ * r % r2 # => (1/2)
+ * r % 2 # => (1/2)
+ * r % 2.0 # => 0.5
+ *
+ * r = Rational(301,100) # => (301/100)
+ * r2 = Rational(7,5) # => (7/5)
+ * r % r2 # => (21/100)
+ * r % -r2 # => (-119/100)
+ * (-r) % r2 # => (119/100)
+ * (-r) %-r2 # => (-21/100)
+ *
*/
static VALUE
@@ -634,79 +701,89 @@ num_modulo(VALUE x, VALUE y)
{
VALUE q = num_funcall1(x, id_div, y);
return rb_funcall(x, '-', 1,
- rb_funcall(y, '*', 1, q));
+ rb_funcall(y, '*', 1, q));
}
/*
* call-seq:
- * num.remainder(numeric) -> real
+ * remainder(other) -> real_number
*
- * <code>x.remainder(y)</code> means <code>x-y*(x/y).truncate</code>.
+ * Returns the remainder after dividing +self+ by +other+.
+ *
+ * Of the Core and Standard Library classes,
+ * only Float and Rational use this implementation.
+ *
+ * Examples:
+ *
+ * 11.0.remainder(4) # => 3.0
+ * 11.0.remainder(-4) # => 3.0
+ * -11.0.remainder(4) # => -3.0
+ * -11.0.remainder(-4) # => -3.0
+ *
+ * 12.0.remainder(4) # => 0.0
+ * 12.0.remainder(-4) # => 0.0
+ * -12.0.remainder(4) # => -0.0
+ * -12.0.remainder(-4) # => -0.0
+ *
+ * 13.0.remainder(4.0) # => 1.0
+ * 13.0.remainder(Rational(4, 1)) # => 1.0
+ *
+ * Rational(13, 1).remainder(4) # => (1/1)
+ * Rational(13, 1).remainder(-4) # => (1/1)
+ * Rational(-13, 1).remainder(4) # => (-1/1)
+ * Rational(-13, 1).remainder(-4) # => (-1/1)
*
- * See Numeric#divmod.
*/
static VALUE
num_remainder(VALUE x, VALUE y)
{
+ if (!rb_obj_is_kind_of(y, rb_cNumeric)) {
+ do_coerce(&x, &y, TRUE);
+ }
VALUE z = num_funcall1(x, '%', y);
if ((!rb_equal(z, INT2FIX(0))) &&
- ((rb_num_negative_int_p(x) &&
- rb_num_positive_int_p(y)) ||
- (rb_num_positive_int_p(x) &&
- rb_num_negative_int_p(y)))) {
- if (RB_TYPE_P(y, T_FLOAT)) {
+ ((rb_num_negative_int_p(x) &&
+ rb_num_positive_int_p(y)) ||
+ (rb_num_positive_int_p(x) &&
+ rb_num_negative_int_p(y)))) {
+ if (RB_FLOAT_TYPE_P(y)) {
if (isinf(RFLOAT_VALUE(y))) {
return x;
}
}
- return rb_funcall(z, '-', 1, y);
+ return rb_funcall(z, '-', 1, y);
}
return z;
}
/*
* call-seq:
- * num.divmod(numeric) -> array
- *
- * Returns an array containing the quotient and modulus obtained by dividing
- * +num+ by +numeric+.
- *
- * If <code>q, r = x.divmod(y)</code>, then
- *
- * q = floor(x/y)
- * x = q*y + r
- *
- * The quotient is rounded toward negative infinity, as shown in the
- * following table:
- *
- * a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
- * ------+-----+---------------+---------+-------------+---------------
- * 13 | 4 | 3, 1 | 3 | 1 | 1
- * ------+-----+---------------+---------+-------------+---------------
- * 13 | -4 | -4, -3 | -4 | -3 | 1
- * ------+-----+---------------+---------+-------------+---------------
- * -13 | 4 | -4, 3 | -4 | 3 | -1
- * ------+-----+---------------+---------+-------------+---------------
- * -13 | -4 | 3, -1 | 3 | -1 | -1
- * ------+-----+---------------+---------+-------------+---------------
- * 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
- * ------+-----+---------------+---------+-------------+---------------
- * 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
- * ------+-----+---------------+---------+-------------+---------------
- * -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
- * ------+-----+---------------+---------+-------------+---------------
- * -11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
- *
- *
- * Examples
- *
- * 11.divmod(3) #=> [3, 2]
- * 11.divmod(-3) #=> [-4, -1]
- * 11.divmod(3.5) #=> [3, 0.5]
- * (-11).divmod(3.5) #=> [-4, 3.0]
- * 11.5.divmod(3.5) #=> [3, 1.0]
+ * divmod(other) -> array
+ *
+ * Returns a 2-element array <tt>[q, r]</tt>, where
+ *
+ * q = (self/other).floor # Quotient
+ * r = self % other # Remainder
+ *
+ * Of the Core and Standard Library classes,
+ * only Rational uses this implementation.
+ *
+ * Examples:
+ *
+ * Rational(11, 1).divmod(4) # => [2, (3/1)]
+ * Rational(11, 1).divmod(-4) # => [-3, (-1/1)]
+ * Rational(-11, 1).divmod(4) # => [-3, (1/1)]
+ * Rational(-11, 1).divmod(-4) # => [2, (-3/1)]
+ *
+ * Rational(12, 1).divmod(4) # => [3, (0/1)]
+ * Rational(12, 1).divmod(-4) # => [-3, (0/1)]
+ * Rational(-12, 1).divmod(4) # => [-3, (0/1)]
+ * Rational(-12, 1).divmod(-4) # => [3, (0/1)]
+ *
+ * Rational(13, 1).divmod(4.0) # => [3, 1.0]
+ * Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]
*/
static VALUE
@@ -717,98 +794,102 @@ num_divmod(VALUE x, VALUE y)
/*
* call-seq:
- * num.abs -> numeric
- * num.magnitude -> numeric
+ * abs -> numeric
*
- * Returns the absolute value of +num+.
+ * Returns the absolute value of +self+.
*
- * 12.abs #=> 12
- * (-34.56).abs #=> 34.56
- * -34.56.abs #=> 34.56
+ * 12.abs #=> 12
+ * (-34.56).abs #=> 34.56
+ * -34.56.abs #=> 34.56
*
- * Numeric#magnitude is an alias for Numeric#abs.
*/
static VALUE
num_abs(VALUE num)
{
if (rb_num_negative_int_p(num)) {
- return num_funcall0(num, idUMinus);
+ return num_funcall0(num, idUMinus);
}
return num;
}
/*
* call-seq:
- * num.zero? -> true or false
+ * zero? -> true or false
+ *
+ * Returns +true+ if +zero+ has a zero value, +false+ otherwise.
+ *
+ * Of the Core and Standard Library classes,
+ * only Rational and Complex use this implementation.
*
- * Returns +true+ if +num+ has a zero value.
*/
static VALUE
num_zero_p(VALUE num)
{
- if (rb_equal(num, INT2FIX(0))) {
- return Qtrue;
- }
- return Qfalse;
+ return rb_equal(num, INT2FIX(0));
}
-static VALUE
+static bool
int_zero_p(VALUE num)
{
if (FIXNUM_P(num)) {
- if (FIXNUM_ZERO_P(num)) {
- return Qtrue;
- }
+ return FIXNUM_ZERO_P(num);
}
- else {
- assert(RB_TYPE_P(num, T_BIGNUM));
- if (rb_bigzero_p(num)) {
- /* this should not happen usually */
- return Qtrue;
- }
- }
- return Qfalse;
+ RUBY_ASSERT(RB_BIGNUM_TYPE_P(num));
+ return rb_bigzero_p(num);
}
VALUE
rb_int_zero_p(VALUE num)
{
- return int_zero_p(num);
+ return RBOOL(int_zero_p(num));
}
/*
* call-seq:
- * num.nonzero? -> self or nil
+ * nonzero? -> self or nil
+ *
+ * Returns +self+ if +self+ is not a zero value, +nil+ otherwise;
+ * uses method <tt>zero?</tt> for the evaluation.
*
- * Returns +self+ if +num+ is not zero, +nil+ otherwise.
+ * The returned +self+ allows the method to be chained:
*
- * This behavior is useful when chaining comparisons:
+ * a = %w[z Bb bB bb BB a aA Aa AA A]
+ * a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
+ * # => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
+ *
+ * Of the Core and Standard Library classes,
+ * Integer, Float, Rational, and Complex use this implementation.
*
- * a = %w( z Bb bB bb BB a aA Aa AA A )
- * b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
- * b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
*/
static VALUE
num_nonzero_p(VALUE num)
{
if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
- return Qnil;
+ return Qnil;
}
return num;
}
/*
* call-seq:
- * num.to_int -> integer
+ * to_int -> integer
+ *
+ * Returns +self+ as an integer;
+ * converts using method +to_i+ in the derived class.
+ *
+ * Of the Core and Standard Library classes,
+ * only Rational and Complex use this implementation.
*
- * Invokes the child class's +to_i+ method to convert +num+ to an integer.
+ * Examples:
+ *
+ * Rational(1, 2).to_int # => 0
+ * Rational(2, 1).to_int # => 2
+ * Complex(2, 0).to_int # => 2
+ * Complex(2, 1) # Raises RangeError (non-zero imaginary part)
*
- * 1.0.class #=> Float
- * 1.0.to_int.class #=> Integer
- * 1.0.to_i.class #=> Integer
*/
static VALUE
@@ -819,9 +900,10 @@ num_to_int(VALUE num)
/*
* call-seq:
- * num.positive? -> true or false
+ * positive? -> true or false
+ *
+ * Returns +true+ if +self+ is greater than 0, +false+ otherwise.
*
- * Returns +true+ if +num+ is greater than 0.
*/
static VALUE
@@ -830,62 +912,150 @@ num_positive_p(VALUE num)
const ID mid = '>';
if (FIXNUM_P(num)) {
- if (method_basic_p(rb_cInteger))
- return (SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0) ? Qtrue : Qfalse;
+ if (method_basic_p(rb_cInteger))
+ return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0));
}
- else if (RB_TYPE_P(num, T_BIGNUM)) {
- if (method_basic_p(rb_cInteger))
- return BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num) ? Qtrue : Qfalse;
+ else if (RB_BIGNUM_TYPE_P(num)) {
+ if (method_basic_p(rb_cInteger))
+ return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num));
}
return rb_num_compare_with_zero(num, mid);
}
/*
* call-seq:
- * num.negative? -> true or false
+ * negative? -> true or false
+ *
+ * Returns +true+ if +self+ is less than 0, +false+ otherwise.
*
- * Returns +true+ if +num+ is less than 0.
*/
static VALUE
num_negative_p(VALUE num)
{
- return rb_num_negative_int_p(num) ? Qtrue : Qfalse;
+ return RBOOL(rb_num_negative_int_p(num));
}
/********************************************************************
*
- * Document-class: Float
+ * Document-class: Float
*
- * Float objects represent inexact real numbers using the native
+ * A \Float object represents a sometimes-inexact real number using the native
* architecture's double-precision floating point representation.
*
* Floating point has a different arithmetic and is an inexact number.
* So you should know its esoteric system. See following:
*
* - https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- * - https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise
+ * - https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#-why-are-rubys-floats-imprecise
* - https://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
+ *
+ * You can create a \Float object explicitly with:
+ *
+ * - A {floating-point literal}[rdoc-ref:syntax/literals.rdoc@Float+Literals].
+ *
+ * You can convert certain objects to Floats with:
+ *
+ * - \Method #Float.
+ *
+ * == What's Here
+ *
+ * First, what's elsewhere. \Class \Float:
+ *
+ * - Inherits from
+ * {class Numeric}[rdoc-ref:Numeric@What-27s+Here]
+ * and {class Object}[rdoc-ref:Object@What-27s+Here].
+ * - Includes {module Comparable}[rdoc-ref:Comparable@What-27s+Here].
+ *
+ * Here, class \Float provides methods for:
+ *
+ * - {Querying}[rdoc-ref:Float@Querying]
+ * - {Comparing}[rdoc-ref:Float@Comparing]
+ * - {Converting}[rdoc-ref:Float@Converting]
+ *
+ * === Querying
+ *
+ * - #finite?: Returns whether +self+ is finite.
+ * - #hash: Returns the integer hash code for +self+.
+ * - #infinite?: Returns whether +self+ is infinite.
+ * - #nan?: Returns whether +self+ is a NaN (not-a-number).
+ *
+ * === Comparing
+ *
+ * - #<: Returns whether +self+ is less than the given value.
+ * - #<=: Returns whether +self+ is less than or equal to the given value.
+ * - #<=>: Returns a number indicating whether +self+ is less than, equal
+ * to, or greater than the given value.
+ * - #== (aliased as #=== and #eql?): Returns whether +self+ is equal to
+ * the given value.
+ * - #>: Returns whether +self+ is greater than the given value.
+ * - #>=: Returns whether +self+ is greater than or equal to the given value.
+ *
+ * === Converting
+ *
+ * - #% (aliased as #modulo): Returns +self+ modulo the given value.
+ * - #*: Returns the product of +self+ and the given value.
+ * - #**: Returns the value of +self+ raised to the power of the given value.
+ * - #+: Returns the sum of +self+ and the given value.
+ * - #-: Returns the difference of +self+ and the given value.
+ * - #/: Returns the quotient of +self+ and the given value.
+ * - #ceil: Returns the smallest number greater than or equal to +self+.
+ * - #coerce: Returns a 2-element array containing the given value converted to a \Float
+ * and +self+
+ * - #divmod: Returns a 2-element array containing the quotient and remainder
+ * results of dividing +self+ by the given value.
+ * - #fdiv: Returns the \Float result of dividing +self+ by the given value.
+ * - #floor: Returns the greatest number smaller than or equal to +self+.
+ * - #next_float: Returns the next-larger representable \Float.
+ * - #prev_float: Returns the next-smaller representable \Float.
+ * - #quo: Returns the quotient from dividing +self+ by the given value.
+ * - #round: Returns +self+ rounded to the nearest value, to a given precision.
+ * - #to_i (aliased as #to_int): Returns +self+ truncated to an Integer.
+ * - #to_s (aliased as #inspect): Returns a string containing the place-value
+ * representation of +self+ in the given radix.
+ * - #truncate: Returns +self+ truncated to a given precision.
+ *
*/
VALUE
rb_float_new_in_heap(double d)
{
- NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0));
+ NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0), sizeof(struct RFloat), 0);
+#if SIZEOF_DOUBLE <= SIZEOF_VALUE
flt->float_value = d;
+#else
+ union {
+ double d;
+ rb_float_value_type v;
+ } u = {d};
+ flt->float_value = u.v;
+#endif
OBJ_FREEZE((VALUE)flt);
return (VALUE)flt;
}
/*
* call-seq:
- * float.to_s -> string
+ * to_s -> string
+ *
+ * Returns a string containing a representation of +self+;
+ * depending of the value of +self+, the string representation
+ * may contain:
+ *
+ * - A fixed-point number.
+ * - A number in "scientific notation" (containing an exponent).
+ * - 'Infinity'.
+ * - '-Infinity'.
+ * - 'NaN' (indicating not-a-number).
+ *
+ * 3.14.to_s # => "3.14"
+ * (10.1**50).to_s # => "1.644631821843879e+50"
+ * (10.1**500).to_s # => "Infinity"
+ * (-10.1**500).to_s # => "-Infinity"
+ * (0.0/0.0).to_s # => "NaN"
*
- * Returns a string containing a representation of +self+.
- * As well as a fixed or exponential form of the +float+,
- * the call may return +NaN+, +Infinity+, and +-Infinity+.
*/
static VALUE
@@ -893,55 +1063,55 @@ flo_to_s(VALUE flt)
{
enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
enum {float_dig = DBL_DIG+1};
- char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
+ char buf[float_dig + roomof(decimal_mant, CHAR_BIT) + 10];
double value = RFLOAT_VALUE(flt);
VALUE s;
char *p, *e;
int sign, decpt, digs;
if (isinf(value)) {
- static const char minf[] = "-Infinity";
- const int pos = (value > 0); /* skip "-" */
- return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
+ static const char minf[] = "-Infinity";
+ const int pos = (value > 0); /* skip "-" */
+ return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
}
else if (isnan(value))
- return rb_usascii_str_new2("NaN");
+ return rb_usascii_str_new2("NaN");
p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
memcpy(buf, p, digs);
- xfree(p);
+ free(p);
if (decpt > 0) {
- if (decpt < digs) {
- memmove(buf + decpt + 1, buf + decpt, digs - decpt);
- buf[decpt] = '.';
- rb_str_cat(s, buf, digs + 1);
- }
- else if (decpt <= DBL_DIG) {
- long len;
- char *ptr;
- rb_str_cat(s, buf, digs);
- rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
- ptr = RSTRING_PTR(s) + len;
- if (decpt > digs) {
- memset(ptr, '0', decpt - digs);
- ptr += decpt - digs;
- }
- memcpy(ptr, ".0", 2);
- }
- else {
- goto exp;
- }
+ if (decpt < digs) {
+ memmove(buf + decpt + 1, buf + decpt, digs - decpt);
+ buf[decpt] = '.';
+ rb_str_cat(s, buf, digs + 1);
+ }
+ else if (decpt <= DBL_DIG) {
+ long len;
+ char *ptr;
+ rb_str_cat(s, buf, digs);
+ rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
+ ptr = RSTRING_PTR(s) + len;
+ if (decpt > digs) {
+ memset(ptr, '0', decpt - digs);
+ ptr += decpt - digs;
+ }
+ memcpy(ptr, ".0", 2);
+ }
+ else {
+ goto exp;
+ }
}
else if (decpt > -4) {
- long len;
- char *ptr;
- rb_str_cat(s, "0.", 2);
- rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
- ptr = RSTRING_PTR(s);
- memset(ptr += len, '0', -decpt);
- memcpy(ptr -= decpt, buf, digs);
+ long len;
+ char *ptr;
+ rb_str_cat(s, "0.", 2);
+ rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
+ ptr = RSTRING_PTR(s);
+ memset(ptr += len, '0', -decpt);
+ memcpy(ptr -= decpt, buf, digs);
}
else {
goto exp;
@@ -964,15 +1134,19 @@ flo_to_s(VALUE flt)
/*
* call-seq:
- * float.coerce(numeric) -> array
+ * coerce(other) -> array
+ *
+ * Returns a 2-element array containing +other+ converted to a \Float
+ * and +self+:
*
- * Returns an array with both +numeric+ and +float+ represented as Float
- * objects.
+ * f = 3.14 # => 3.14
+ * f.coerce(2) # => [2.0, 3.14]
+ * f.coerce(2.0) # => [2.0, 3.14]
+ * f.coerce(Rational(1, 2)) # => [0.5, 3.14]
+ * f.coerce(Complex(1, 0)) # => [1.0, 3.14]
*
- * This is achieved by converting +numeric+ to a Float.
+ * Raises an exception if a type conversion fails.
*
- * 1.2.coerce(3) #=> [3.0, 1.2]
- * 2.5.coerce(1.1) #=> [1.1, 2.5]
*/
static VALUE
@@ -981,81 +1155,101 @@ flo_coerce(VALUE x, VALUE y)
return rb_assoc_new(rb_Float(y), x);
}
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_float_uminus(VALUE flt)
{
return DBL2NUM(-RFLOAT_VALUE(flt));
}
/*
- * call-seq:
- * float + other -> float
+ * call-seq:
+ * self + other -> numeric
+ *
+ * Returns a new \Float which is the sum of +self+ and +other+:
+ *
+ * f = 3.14
+ * f + 1 # => 4.140000000000001
+ * f + 1.0 # => 4.140000000000001
+ * f + Rational(1, 1) # => 4.140000000000001
+ * f + Complex(1, 0) # => (4.140000000000001+0i)
*
- * Returns a new Float which is the sum of +float+ and +other+.
*/
VALUE
rb_float_plus(VALUE x, VALUE y)
{
- if (RB_TYPE_P(y, T_FIXNUM)) {
- return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
+ if (FIXNUM_P(y)) {
+ return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
+ else if (RB_FLOAT_TYPE_P(y)) {
+ return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
}
else {
- return rb_num_coerce_bin(x, y, '+');
+ return rb_num_coerce_bin(x, y, '+');
}
}
/*
- * call-seq:
- * float - other -> float
+ * call-seq:
+ * self - other -> numeric
+ *
+ * Returns a new \Float which is the difference of +self+ and +other+:
+ *
+ * f = 3.14
+ * f - 1 # => 2.14
+ * f - 1.0 # => 2.14
+ * f - Rational(1, 1) # => 2.14
+ * f - Complex(1, 0) # => (2.14+0i)
*
- * Returns a new Float which is the difference of +float+ and +other+.
*/
VALUE
rb_float_minus(VALUE x, VALUE y)
{
- if (RB_TYPE_P(y, T_FIXNUM)) {
- return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
+ if (FIXNUM_P(y)) {
+ return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
+ else if (RB_FLOAT_TYPE_P(y)) {
+ return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
}
else {
- return rb_num_coerce_bin(x, y, '-');
+ return rb_num_coerce_bin(x, y, '-');
}
}
/*
- * call-seq:
- * float * other -> float
+ * call-seq:
+ * self * other -> numeric
+ *
+ * Returns a new \Float which is the product of +self+ and +other+:
*
- * Returns a new Float which is the product of +float+ and +other+.
+ * f = 3.14
+ * f * 2 # => 6.28
+ * f * 2.0 # => 6.28
+ * f * Rational(1, 2) # => 1.57
+ * f * Complex(2, 0) # => (6.28+0.0i)
*/
VALUE
rb_float_mul(VALUE x, VALUE y)
{
- if (RB_TYPE_P(y, T_FIXNUM)) {
- return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
+ if (FIXNUM_P(y)) {
+ return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
+ else if (RB_FLOAT_TYPE_P(y)) {
+ return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
}
else {
- return rb_num_coerce_bin(x, y, '*');
+ return rb_num_coerce_bin(x, y, '*');
}
}
@@ -1074,7 +1268,7 @@ double_div_double(double x, double y)
}
}
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_flo_div_flo(VALUE x, VALUE y)
{
double num = RFLOAT_VALUE(x);
@@ -1084,10 +1278,17 @@ rb_flo_div_flo(VALUE x, VALUE y)
}
/*
- * call-seq:
- * float / other -> float
+ * call-seq:
+ * self / other -> numeric
+ *
+ * Returns a new \Float which is the result of dividing +self+ by +other+:
+ *
+ * f = 3.14
+ * f / 2 # => 1.57
+ * f / 2.0 # => 1.57
+ * f / Rational(2, 1) # => 1.57
+ * f / Complex(2, 0) # => (1.57+0.0i)
*
- * Returns a new Float which is the result of dividing +float+ by +other+.
*/
VALUE
@@ -1097,17 +1298,17 @@ rb_float_div(VALUE x, VALUE y)
double den;
double ret;
- if (RB_TYPE_P(y, T_FIXNUM)) {
+ if (FIXNUM_P(y)) {
den = FIX2LONG(y);
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
+ else if (RB_BIGNUM_TYPE_P(y)) {
den = rb_big2dbl(y);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
+ else if (RB_FLOAT_TYPE_P(y)) {
den = RFLOAT_VALUE(y);
}
else {
- return rb_num_coerce_bin(x, y, '/');
+ return rb_num_coerce_bin(x, y, '/');
}
ret = double_div_double(num, den);
@@ -1116,10 +1317,16 @@ rb_float_div(VALUE x, VALUE y)
/*
* call-seq:
- * float.fdiv(numeric) -> float
- * float.quo(numeric) -> float
+ * quo(other) -> numeric
+ *
+ * Returns the quotient from dividing +self+ by +other+:
+ *
+ * f = 3.14
+ * f.quo(2) # => 1.57
+ * f.quo(-2) # => -1.57
+ * f.quo(Rational(2, 1)) # => 1.57
+ * f.quo(Complex(2, 0)) # => (1.57+0.0i)
*
- * Returns <code>float / numeric</code>, same as Float#/.
*/
static VALUE
@@ -1134,28 +1341,28 @@ flodivmod(double x, double y, double *divp, double *modp)
double div, mod;
if (isnan(y)) {
- /* y is NaN so all results are NaN */
- if (modp) *modp = y;
- if (divp) *divp = y;
- return;
+ /* y is NaN so all results are NaN */
+ if (modp) *modp = y;
+ if (divp) *divp = y;
+ return;
}
if (y == 0.0) rb_num_zerodiv();
if ((x == 0.0) || (isinf(y) && !isinf(x)))
mod = x;
else {
#ifdef HAVE_FMOD
- mod = fmod(x, y);
+ mod = fmod(x, y);
#else
- double z;
+ double z;
- modf(x/y, &z);
- mod = x - z * y;
+ modf(x/y, &z);
+ mod = x - z * y;
#endif
}
if (isinf(x) && !isinf(y))
- div = x;
+ div = x;
else {
- div = (x - mod) / y;
+ div = (x - mod) / y;
if (modp && divp) div = round(div);
}
if (y*mod < 0) {
@@ -1171,7 +1378,7 @@ flodivmod(double x, double y, double *divp, double *modp)
* An error will be raised if y == 0.
*/
-MJIT_FUNC_EXPORTED double
+double
ruby_float_mod(double x, double y)
{
double mod;
@@ -1181,13 +1388,31 @@ ruby_float_mod(double x, double y)
/*
* call-seq:
- * float % other -> float
- * float.modulo(other) -> float
+ * self % other -> float
+ *
+ * Returns +self+ modulo +other+ as a float.
+ *
+ * For float +f+ and real number +r+, these expressions are equivalent:
+ *
+ * f % r
+ * f-r*(f/r).floor
+ * f.divmod(r)[1]
+ *
+ * See Numeric#divmod.
+ *
+ * Examples:
*
- * Returns the modulo after division of +float+ by +other+.
+ * 10.0 % 2 # => 0.0
+ * 10.0 % 3 # => 1.0
+ * 10.0 % 4 # => 2.0
+ *
+ * 10.0 % -2 # => 0.0
+ * 10.0 % -3 # => -2.0
+ * 10.0 % -4 # => -2.0
+ *
+ * 10.0 % 4.0 # => 2.0
+ * 10.0 % Rational(4, 1) # => 2.0
*
- * 6543.21.modulo(137) #=> 104.21000000000004
- * 6543.21.modulo(137.24) #=> 92.92999999999961
*/
static VALUE
@@ -1195,17 +1420,17 @@ flo_mod(VALUE x, VALUE y)
{
double fy;
- if (RB_TYPE_P(y, T_FIXNUM)) {
- fy = (double)FIX2LONG(y);
+ if (FIXNUM_P(y)) {
+ fy = (double)FIX2LONG(y);
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- fy = rb_big2dbl(y);
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ fy = rb_big2dbl(y);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- fy = RFLOAT_VALUE(y);
+ else if (RB_FLOAT_TYPE_P(y)) {
+ fy = RFLOAT_VALUE(y);
}
else {
- return rb_num_coerce_bin(x, y, '%');
+ return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
@@ -1214,19 +1439,35 @@ static VALUE
dbl2ival(double d)
{
if (FIXABLE(d)) {
- return LONG2FIX((long)d);
+ return LONG2FIX((long)d);
}
return rb_dbl2big(d);
}
/*
* call-seq:
- * float.divmod(numeric) -> array
+ * divmod(other) -> array
*
- * See Numeric#divmod.
+ * Returns a 2-element array <tt>[q, r]</tt>, where
+ *
+ * q = (self/other).floor # Quotient
+ * r = self % other # Remainder
+ *
+ * Examples:
+ *
+ * 11.0.divmod(4) # => [2, 3.0]
+ * 11.0.divmod(-4) # => [-3, -1.0]
+ * -11.0.divmod(4) # => [-3, 1.0]
+ * -11.0.divmod(-4) # => [2, -3.0]
+ *
+ * 12.0.divmod(4) # => [3, 0.0]
+ * 12.0.divmod(-4) # => [-3, 0.0]
+ * -12.0.divmod(4) # => [-3, -0.0]
+ * -12.0.divmod(-4) # => [3, -0.0]
+ *
+ * 13.0.divmod(4.0) # => [3, 1.0]
+ * 13.0.divmod(Rational(4, 1)) # => [3, 1.0]
*
- * 42.0.divmod(6) #=> [7, 0.0]
- * 42.0.divmod(5) #=> [8, 2.0]
*/
static VALUE
@@ -1235,17 +1476,17 @@ flo_divmod(VALUE x, VALUE y)
double fy, div, mod;
volatile VALUE a, b;
- if (RB_TYPE_P(y, T_FIXNUM)) {
- fy = (double)FIX2LONG(y);
+ if (FIXNUM_P(y)) {
+ fy = (double)FIX2LONG(y);
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- fy = rb_big2dbl(y);
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ fy = rb_big2dbl(y);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- fy = RFLOAT_VALUE(y);
+ else if (RB_FLOAT_TYPE_P(y)) {
+ fy = RFLOAT_VALUE(y);
}
else {
- return rb_num_coerce_bin(x, y, id_divmod);
+ return rb_num_coerce_bin(x, y, id_divmod);
}
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
a = dbl2ival(div);
@@ -1254,12 +1495,18 @@ flo_divmod(VALUE x, VALUE y)
}
/*
- * call-seq:
- * float ** other -> float
+ * call-seq:
+ * self ** other -> numeric
+ *
+ * Raises +self+ to the power of +other+:
*
- * Raises +float+ to the power of +other+.
+ * f = 3.14
+ * f ** 2 # => 9.8596
+ * f ** -2 # => 0.1014239928597509
+ * f ** 2.1 # => 11.054834900588839
+ * f ** Rational(2, 1) # => 9.8596
+ * f ** Complex(2, 0) # => (9.8596+0i)
*
- * 2.0**3 #=> 8.0
*/
VALUE
@@ -1267,39 +1514,48 @@ rb_float_pow(VALUE x, VALUE y)
{
double dx, dy;
if (y == INT2FIX(2)) {
- dx = RFLOAT_VALUE(x);
+ dx = RFLOAT_VALUE(x);
return DBL2NUM(dx * dx);
}
- else if (RB_TYPE_P(y, T_FIXNUM)) {
- dx = RFLOAT_VALUE(x);
- dy = (double)FIX2LONG(y);
+ else if (FIXNUM_P(y)) {
+ dx = RFLOAT_VALUE(x);
+ dy = (double)FIX2LONG(y);
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- dx = RFLOAT_VALUE(x);
- dy = rb_big2dbl(y);
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ dx = RFLOAT_VALUE(x);
+ dy = rb_big2dbl(y);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- dx = RFLOAT_VALUE(x);
- dy = RFLOAT_VALUE(y);
- if (dx < 0 && dy != round(dy))
+ else if (RB_FLOAT_TYPE_P(y)) {
+ dx = RFLOAT_VALUE(x);
+ dy = RFLOAT_VALUE(y);
+ if (dx < 0 && dy != round(dy))
return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);
}
else {
- return rb_num_coerce_bin(x, y, idPow);
+ return rb_num_coerce_bin(x, y, idPow);
}
return DBL2NUM(pow(dx, dy));
}
/*
* call-seq:
- * num.eql?(numeric) -> true or false
+ * eql?(other) -> true or false
*
- * Returns +true+ if +num+ and +numeric+ are the same type and have equal
- * values. Contrast this with Numeric#==, which performs type conversions.
+ * Returns +true+ if +self+ and +other+ are the same type and have equal values.
+ *
+ * Of the Core and Standard Library classes,
+ * only Integer, Rational, and Complex use this implementation.
+ *
+ * Examples:
+ *
+ * 1.eql?(1) # => true
+ * 1.eql?(1.0) # => false
+ * 1.eql?(Rational(1, 1)) # => false
+ * 1.eql?(Complex(1, 0)) # => false
+ *
+ * \Method +eql?+ is different from <tt>==</tt> in that +eql?+ requires matching types,
+ * while <tt>==</tt> does not.
*
- * 1 == 1.0 #=> true
- * 1.eql?(1.0) #=> false
- * 1.0.eql?(1.0) #=> true
*/
static VALUE
@@ -1307,8 +1563,8 @@ num_eql(VALUE x, VALUE y)
{
if (TYPE(x) != TYPE(y)) return Qfalse;
- if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_eql(x, y);
+ if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_eql(x, y);
}
return rb_equal(x, y);
@@ -1316,9 +1572,12 @@ num_eql(VALUE x, VALUE y)
/*
* call-seq:
- * number <=> other -> 0 or nil
+ * self <=> other -> zero or nil
+ *
+ * Returns zero if +self+ is the same as +other+, +nil+ otherwise.
+ *
+ * No subclass in the Ruby Core or Standard Library uses this implementation.
*
- * Returns zero if +number+ equals +other+, otherwise returns +nil+.
*/
static VALUE
@@ -1334,45 +1593,48 @@ num_equal(VALUE x, VALUE y)
VALUE result;
if (x == y) return Qtrue;
result = num_funcall1(y, id_eq, x);
- if (RTEST(result)) return Qtrue;
- return Qfalse;
+ return RBOOL(RTEST(result));
}
/*
* call-seq:
- * float == obj -> true or false
+ * self == other -> true or false
+ *
+ * Returns +true+ if +other+ has the same value as +self+, +false+ otherwise:
+ *
+ * 2.0 == 2 # => true
+ * 2.0 == 2.0 # => true
+ * 2.0 == Rational(2, 1) # => true
+ * 2.0 == Complex(2, 0) # => true
*
- * Returns +true+ only if +obj+ has the same value as +float+.
- * Contrast this with Float#eql?, which requires +obj+ to be a Float.
+ * <tt>Float::NAN == Float::NAN</tt> returns an implementation-dependent value.
*
- * 1.0 == 1 #=> true
+ * Related: Float#eql? (requires +other+ to be a \Float).
*
- * The result of <code>NaN == NaN</code> is undefined,
- * so an implementation-dependent value is returned.
*/
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_float_equal(VALUE x, VALUE y)
{
volatile double a, b;
- if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ if (RB_INTEGER_TYPE_P(y)) {
return rb_integer_float_eq(y, x);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- b = RFLOAT_VALUE(y);
+ else if (RB_FLOAT_TYPE_P(y)) {
+ b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
- if (isnan(b)) return Qfalse;
+ if (isnan(b)) return Qfalse;
#endif
}
else {
- return num_equal(x, y);
+ return num_equal(x, y);
}
a = RFLOAT_VALUE(x);
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
- return (a == b)?Qtrue:Qfalse;
+ return RBOOL(a == b);
}
#define flo_eq rb_float_equal
@@ -1380,9 +1642,9 @@ static VALUE rb_dbl_hash(double d);
/*
* call-seq:
- * float.hash -> integer
+ * hash -> integer
*
- * Returns a hash code for this float.
+ * Returns the integer hash value for +self+.
*
* See also Object#hash.
*/
@@ -1411,16 +1673,30 @@ rb_dbl_cmp(double a, double b)
/*
* call-seq:
- * float <=> real -> -1, 0, +1, or nil
+ * self <=> other -> -1, 0, +1, or nil
+ *
+ * Returns a value that depends on the numeric relation
+ * between +self+ and +other+:
+ *
+ * - -1, if +self+ is less than +other+.
+ * - 0, if +self+ is equal to +other+.
+ * - 1, if +self+ is greater than +other+.
+ * - +nil+, if the two values are incommensurate.
+ *
+ * Examples:
+ *
+ * 2.0 <=> 2 # => 0
+ * 2.0 <=> 2.0 # => 0
+ * 2.0 <=> Rational(2, 1) # => 0
+ * 2.0 <=> Complex(2, 0) # => 0
+ * 2.0 <=> 1.9 # => 1
+ * 2.0 <=> 2.1 # => -1
+ * 2.0 <=> 'foo' # => nil
*
- * Returns -1, 0, or +1 depending on whether +float+ is
- * less than, equal to, or greater than +real+.
* This is the basis for the tests in the Comparable module.
*
- * The result of <code>NaN <=> NaN</code> is undefined,
- * so an implementation-dependent value is returned.
+ * <tt>Float::NAN <=> Float::NAN</tt> returns an implementation-dependent value.
*
- * +nil+ is returned if the two values are incomparable.
*/
static VALUE
@@ -1431,44 +1707,49 @@ flo_cmp(VALUE x, VALUE y)
a = RFLOAT_VALUE(x);
if (isnan(a)) return Qnil;
- if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ if (RB_INTEGER_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return LONG2FIX(-FIX2LONG(rel));
return rel;
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- b = RFLOAT_VALUE(y);
+ else if (RB_FLOAT_TYPE_P(y)) {
+ b = RFLOAT_VALUE(y);
}
else {
- if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
- if (RTEST(i)) {
- int j = rb_cmpint(i, x, y);
- j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
- return INT2FIX(j);
- }
- if (a > 0.0) return INT2FIX(1);
- return INT2FIX(-1);
- }
- return rb_num_coerce_cmp(x, y, id_cmp);
+ if (isinf(a) && !UNDEF_P(i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0))) {
+ if (RTEST(i)) {
+ int j = rb_cmpint(i, x, y);
+ j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
+ return INT2FIX(j);
+ }
+ if (a > 0.0) return INT2FIX(1);
+ return INT2FIX(-1);
+ }
+ return rb_num_coerce_cmp(x, y, id_cmp);
}
return rb_dbl_cmp(a, b);
}
-MJIT_FUNC_EXPORTED int
+int
rb_float_cmp(VALUE x, VALUE y)
{
return NUM2INT(ensure_cmp(flo_cmp(x, y), x, y));
}
/*
- * call-seq:
- * float > real -> true or false
+ * call-seq:
+ * self > other -> true or false
+ *
+ * Returns +true+ if +self+ is numerically greater than +other+:
*
- * Returns +true+ if +float+ is greater than +real+.
+ * 2.0 > 1 # => true
+ * 2.0 > 1.0 # => true
+ * 2.0 > Rational(1, 2) # => true
+ * 2.0 > 2.0 # => false
+ *
+ * <tt>Float::NAN > Float::NAN</tt> returns an implementation-dependent value.
*
- * The result of <code>NaN > NaN</code> is undefined,
- * so an implementation-dependent value is returned.
*/
VALUE
@@ -1477,35 +1758,41 @@ rb_float_gt(VALUE x, VALUE y)
double a, b;
a = RFLOAT_VALUE(x);
- if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ if (RB_INTEGER_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
- return -FIX2LONG(rel) > 0 ? Qtrue : Qfalse;
+ return RBOOL(-FIX2LONG(rel) > 0);
return Qfalse;
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- b = RFLOAT_VALUE(y);
+ else if (RB_FLOAT_TYPE_P(y)) {
+ b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
- if (isnan(b)) return Qfalse;
+ if (isnan(b)) return Qfalse;
#endif
}
else {
- return rb_num_coerce_relop(x, y, '>');
+ return rb_num_coerce_relop(x, y, '>');
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
- return (a > b)?Qtrue:Qfalse;
+ return RBOOL(a > b);
}
/*
- * call-seq:
- * float >= real -> true or false
+ * call-seq:
+ * self >= other -> true or false
+ *
+ * Returns +true+ if +self+ is numerically greater than or equal to +other+:
+ *
+ * 2.0 >= 1 # => true
+ * 2.0 >= 1.0 # => true
+ * 2.0 >= Rational(1, 2) # => true
+ * 2.0 >= 2.0 # => true
+ * 2.0 >= 2.1 # => false
*
- * Returns +true+ if +float+ is greater than or equal to +real+.
+ * <tt>Float::NAN >= Float::NAN</tt> returns an implementation-dependent value.
*
- * The result of <code>NaN >= NaN</code> is undefined,
- * so an implementation-dependent value is returned.
*/
static VALUE
@@ -1514,35 +1801,40 @@ flo_ge(VALUE x, VALUE y)
double a, b;
a = RFLOAT_VALUE(x);
- if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ if (RB_TYPE_P(y, T_FIXNUM) || RB_BIGNUM_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
- return -FIX2LONG(rel) >= 0 ? Qtrue : Qfalse;
+ return RBOOL(-FIX2LONG(rel) >= 0);
return Qfalse;
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- b = RFLOAT_VALUE(y);
+ else if (RB_FLOAT_TYPE_P(y)) {
+ b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
- if (isnan(b)) return Qfalse;
+ if (isnan(b)) return Qfalse;
#endif
}
else {
- return rb_num_coerce_relop(x, y, idGE);
+ return rb_num_coerce_relop(x, y, idGE);
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
- return (a >= b)?Qtrue:Qfalse;
+ return RBOOL(a >= b);
}
/*
- * call-seq:
- * float < real -> true or false
+ * call-seq:
+ * self < other -> true or false
+ *
+ * Returns +true+ if +self+ is numerically less than +other+:
*
- * Returns +true+ if +float+ is less than +real+.
+ * 2.0 < 3 # => true
+ * 2.0 < 3.0 # => true
+ * 2.0 < Rational(3, 1) # => true
+ * 2.0 < 2.0 # => false
+ *
+ * <tt>Float::NAN < Float::NAN</tt> returns an implementation-dependent value.
*
- * The result of <code>NaN < NaN</code> is undefined,
- * so an implementation-dependent value is returned.
*/
static VALUE
@@ -1551,35 +1843,41 @@ flo_lt(VALUE x, VALUE y)
double a, b;
a = RFLOAT_VALUE(x);
- if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ if (RB_INTEGER_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
- return -FIX2LONG(rel) < 0 ? Qtrue : Qfalse;
+ return RBOOL(-FIX2LONG(rel) < 0);
return Qfalse;
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- b = RFLOAT_VALUE(y);
+ else if (RB_FLOAT_TYPE_P(y)) {
+ b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
- if (isnan(b)) return Qfalse;
+ if (isnan(b)) return Qfalse;
#endif
}
else {
- return rb_num_coerce_relop(x, y, '<');
+ return rb_num_coerce_relop(x, y, '<');
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
- return (a < b)?Qtrue:Qfalse;
+ return RBOOL(a < b);
}
/*
- * call-seq:
- * float <= real -> true or false
+ * call-seq:
+ * self <= other -> true or false
*
- * Returns +true+ if +float+ is less than or equal to +real+.
+ * Returns +true+ if +self+ is numerically less than or equal to +other+:
+ *
+ * 2.0 <= 3 # => true
+ * 2.0 <= 3.0 # => true
+ * 2.0 <= Rational(3, 1) # => true
+ * 2.0 <= 2.0 # => true
+ * 2.0 <= 1.0 # => false
+ *
+ * <tt>Float::NAN <= Float::NAN</tt> returns an implementation-dependent value.
*
- * The result of <code>NaN <= NaN</code> is undefined,
- * so an implementation-dependent value is returned.
*/
static VALUE
@@ -1588,58 +1886,62 @@ flo_le(VALUE x, VALUE y)
double a, b;
a = RFLOAT_VALUE(x);
- if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ if (RB_INTEGER_TYPE_P(y)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
- return -FIX2LONG(rel) <= 0 ? Qtrue : Qfalse;
+ return RBOOL(-FIX2LONG(rel) <= 0);
return Qfalse;
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- b = RFLOAT_VALUE(y);
+ else if (RB_FLOAT_TYPE_P(y)) {
+ b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
- if (isnan(b)) return Qfalse;
+ if (isnan(b)) return Qfalse;
#endif
}
else {
- return rb_num_coerce_relop(x, y, idLE);
+ return rb_num_coerce_relop(x, y, idLE);
}
#if MSC_VERSION_BEFORE(1300)
if (isnan(a)) return Qfalse;
#endif
- return (a <= b)?Qtrue:Qfalse;
+ return RBOOL(a <= b);
}
/*
* call-seq:
- * float.eql?(obj) -> true or false
+ * eql?(other) -> true or false
+ *
+ * Returns +true+ if +other+ is a \Float with the same value as +self+,
+ * +false+ otherwise:
*
- * Returns +true+ only if +obj+ is a Float with the same value as +float+.
- * Contrast this with Float#==, which performs type conversions.
+ * 2.0.eql?(2.0) # => true
+ * 2.0.eql?(1.0) # => false
+ * 2.0.eql?(1) # => false
+ * 2.0.eql?(Rational(2, 1)) # => false
+ * 2.0.eql?(Complex(2, 0)) # => false
*
- * 1.0.eql?(1) #=> false
+ * <tt>Float::NAN.eql?(Float::NAN)</tt> returns an implementation-dependent value.
*
- * The result of <code>NaN.eql?(NaN)</code> is undefined,
- * so an implementation-dependent value is returned.
+ * Related: Float#== (performs type conversions).
*/
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_float_eql(VALUE x, VALUE y)
{
- if (RB_TYPE_P(y, T_FLOAT)) {
- double a = RFLOAT_VALUE(x);
- double b = RFLOAT_VALUE(y);
+ if (RB_FLOAT_TYPE_P(y)) {
+ double a = RFLOAT_VALUE(x);
+ double b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300)
- if (isnan(a) || isnan(b)) return Qfalse;
+ if (isnan(a) || isnan(b)) return Qfalse;
#endif
- if (a == b)
- return Qtrue;
+ return RBOOL(a == b);
}
return Qfalse;
}
#define flo_eql rb_float_eql
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_float_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
@@ -1648,14 +1950,14 @@ rb_float_abs(VALUE flt)
/*
* call-seq:
- * float.nan? -> true or false
+ * nan? -> true or false
*
- * Returns +true+ if +float+ is an invalid IEEE floating point number.
+ * Returns +true+ if +self+ is a NaN, +false+ otherwise.
*
- * a = -1.0 #=> -1.0
- * a.nan? #=> false
- * a = 0.0/0.0 #=> NaN
- * a.nan? #=> true
+ * f = -1.0 #=> -1.0
+ * f.nan? #=> false
+ * f = 0.0/0.0 #=> NaN
+ * f.nan? #=> true
*/
static VALUE
@@ -1663,19 +1965,30 @@ flo_is_nan_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
- return isnan(value) ? Qtrue : Qfalse;
+ return RBOOL(isnan(value));
}
/*
* call-seq:
- * float.infinite? -> -1, 1, or nil
+ * infinite? -> -1, 1, or nil
+ *
+ * Returns:
*
- * Returns +nil+, -1, or 1 depending on whether the value is
- * finite, <code>-Infinity</code>, or <code>+Infinity</code>.
+ * - 1, if +self+ is <tt>Infinity</tt>.
+ * - -1 if +self+ is <tt>-Infinity</tt>.
+ * - +nil+, otherwise.
+ *
+ * Examples:
+ *
+ * f = 1.0/0.0 # => Infinity
+ * f.infinite? # => 1
+ * f = -1.0/0.0 # => -Infinity
+ * f.infinite? # => -1
+ * f = 1.0 # => 1.0
+ * f.infinite? # => nil
+ * f = 0.0/0.0 # => NaN
+ * f.infinite? # => nil
*
- * (0.0).infinite? #=> nil
- * (-1.0/0.0).infinite? #=> -1
- * (+1.0/0.0).infinite? #=> 1
*/
VALUE
@@ -1684,7 +1997,7 @@ rb_flo_is_infinite_p(VALUE num)
double value = RFLOAT_VALUE(num);
if (isinf(value)) {
- return INT2FIX( value < 0 ? -1 : 1 );
+ return INT2FIX( value < 0 ? -1 : 1 );
}
return Qnil;
@@ -1692,10 +2005,20 @@ rb_flo_is_infinite_p(VALUE num)
/*
* call-seq:
- * float.finite? -> true or false
+ * finite? -> true or false
+ *
+ * Returns +true+ if +self+ is not +Infinity+, +-Infinity+, or +NaN+,
+ * +false+ otherwise:
+ *
+ * f = 2.0 # => 2.0
+ * f.finite? # => true
+ * f = 1.0/0.0 # => Infinity
+ * f.finite? # => false
+ * f = -1.0/0.0 # => -Infinity
+ * f.finite? # => false
+ * f = 0.0/0.0 # => NaN
+ * f.finite? # => false
*
- * Returns +true+ if +float+ is a valid IEEE floating point number,
- * i.e. it is not infinite and Float#nan? is +false+.
*/
VALUE
@@ -1703,15 +2026,7 @@ rb_flo_is_finite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
-#ifdef HAVE_ISFINITE
- if (!isfinite(value))
- return Qfalse;
-#else
- if (isinf(value) || isnan(value))
- return Qfalse;
-#endif
-
- return Qtrue;
+ return RBOOL(isfinite(value));
}
static VALUE
@@ -1725,55 +2040,47 @@ flo_nextafter(VALUE flo, double value)
/*
* call-seq:
- * float.next_float -> float
- *
- * Returns the next representable floating point number.
- *
- * Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.
- *
- * Float::NAN.next_float is Float::NAN.
- *
- * For example:
- *
- * 0.01.next_float #=> 0.010000000000000002
- * 1.0.next_float #=> 1.0000000000000002
- * 100.0.next_float #=> 100.00000000000001
- *
- * 0.01.next_float - 0.01 #=> 1.734723475976807e-18
- * 1.0.next_float - 1.0 #=> 2.220446049250313e-16
- * 100.0.next_float - 100.0 #=> 1.4210854715202004e-14
- *
- * f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
- * #=> 0x1.47ae147ae147bp-7 0.01
- * # 0x1.47ae147ae147cp-7 0.010000000000000002
- * # 0x1.47ae147ae147dp-7 0.010000000000000004
- * # 0x1.47ae147ae147ep-7 0.010000000000000005
- * # 0x1.47ae147ae147fp-7 0.010000000000000007
- * # 0x1.47ae147ae148p-7 0.010000000000000009
- * # 0x1.47ae147ae1481p-7 0.01000000000000001
- * # 0x1.47ae147ae1482p-7 0.010000000000000012
- * # 0x1.47ae147ae1483p-7 0.010000000000000014
- * # 0x1.47ae147ae1484p-7 0.010000000000000016
- * # 0x1.47ae147ae1485p-7 0.010000000000000018
- * # 0x1.47ae147ae1486p-7 0.01000000000000002
- * # 0x1.47ae147ae1487p-7 0.010000000000000021
- * # 0x1.47ae147ae1488p-7 0.010000000000000023
- * # 0x1.47ae147ae1489p-7 0.010000000000000024
- * # 0x1.47ae147ae148ap-7 0.010000000000000026
- * # 0x1.47ae147ae148bp-7 0.010000000000000028
- * # 0x1.47ae147ae148cp-7 0.01000000000000003
- * # 0x1.47ae147ae148dp-7 0.010000000000000031
- * # 0x1.47ae147ae148ep-7 0.010000000000000033
- *
- * f = 0.0
- * 100.times { f += 0.1 }
- * f #=> 9.99999999999998 # should be 10.0 in the ideal world.
- * 10-f #=> 1.9539925233402755e-14 # the floating point error.
- * 10.0.next_float-10 #=> 1.7763568394002505e-15 # 1 ulp (unit in the last place).
- * (10-f)/(10.0.next_float-10) #=> 11.0 # the error is 11 ulp.
- * (10-f)/(10*Float::EPSILON) #=> 8.8 # approximation of the above.
- * "%a" % 10 #=> "0x1.4p+3"
- * "%a" % f #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
+ * next_float -> float
+ *
+ * Returns the next-larger representable \Float.
+ *
+ * These examples show the internally stored values (64-bit hexadecimal)
+ * for each \Float +f+ and for the corresponding <tt>f.next_float</tt>:
+ *
+ * f = 0.0 # 0x0000000000000000
+ * f.next_float # 0x0000000000000001
+ *
+ * f = 0.01 # 0x3f847ae147ae147b
+ * f.next_float # 0x3f847ae147ae147c
+ *
+ * In the remaining examples here, the output is shown in the usual way
+ * (result +to_s+):
+ *
+ * 0.01.next_float # => 0.010000000000000002
+ * 1.0.next_float # => 1.0000000000000002
+ * 100.0.next_float # => 100.00000000000001
+ *
+ * f = 0.01
+ * (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.next_float }
+ *
+ * Output:
+ *
+ * 0 0x1.47ae147ae147bp-7 0.01
+ * 1 0x1.47ae147ae147cp-7 0.010000000000000002
+ * 2 0x1.47ae147ae147dp-7 0.010000000000000004
+ * 3 0x1.47ae147ae147ep-7 0.010000000000000005
+ *
+ * f = 0.0; 100.times { f += 0.1 }
+ * f # => 9.99999999999998 # should be 10.0 in the ideal world.
+ * 10-f # => 1.9539925233402755e-14 # the floating point error.
+ * 10.0.next_float-10 # => 1.7763568394002505e-15 # 1 ulp (unit in the last place).
+ * (10-f)/(10.0.next_float-10) # => 11.0 # the error is 11 ulp.
+ * (10-f)/(10*Float::EPSILON) # => 8.8 # approximation of the above.
+ * "%a" % 10 # => "0x1.4p+3"
+ * "%a" % f # => "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
+ *
+ * Related: Float#prev_float
+ *
*/
static VALUE
flo_next_float(VALUE vx)
@@ -1785,43 +2092,36 @@ flo_next_float(VALUE vx)
* call-seq:
* float.prev_float -> float
*
- * Returns the previous representable floating point number.
- *
- * (-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.
- *
- * Float::NAN.prev_float is Float::NAN.
- *
- * For example:
- *
- * 0.01.prev_float #=> 0.009999999999999998
- * 1.0.prev_float #=> 0.9999999999999999
- * 100.0.prev_float #=> 99.99999999999999
- *
- * 0.01 - 0.01.prev_float #=> 1.734723475976807e-18
- * 1.0 - 1.0.prev_float #=> 1.1102230246251565e-16
- * 100.0 - 100.0.prev_float #=> 1.4210854715202004e-14
- *
- * f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
- * #=> 0x1.47ae147ae147bp-7 0.01
- * # 0x1.47ae147ae147ap-7 0.009999999999999998
- * # 0x1.47ae147ae1479p-7 0.009999999999999997
- * # 0x1.47ae147ae1478p-7 0.009999999999999995
- * # 0x1.47ae147ae1477p-7 0.009999999999999993
- * # 0x1.47ae147ae1476p-7 0.009999999999999992
- * # 0x1.47ae147ae1475p-7 0.00999999999999999
- * # 0x1.47ae147ae1474p-7 0.009999999999999988
- * # 0x1.47ae147ae1473p-7 0.009999999999999986
- * # 0x1.47ae147ae1472p-7 0.009999999999999985
- * # 0x1.47ae147ae1471p-7 0.009999999999999983
- * # 0x1.47ae147ae147p-7 0.009999999999999981
- * # 0x1.47ae147ae146fp-7 0.00999999999999998
- * # 0x1.47ae147ae146ep-7 0.009999999999999978
- * # 0x1.47ae147ae146dp-7 0.009999999999999976
- * # 0x1.47ae147ae146cp-7 0.009999999999999974
- * # 0x1.47ae147ae146bp-7 0.009999999999999972
- * # 0x1.47ae147ae146ap-7 0.00999999999999997
- * # 0x1.47ae147ae1469p-7 0.009999999999999969
- * # 0x1.47ae147ae1468p-7 0.009999999999999967
+ * Returns the next-smaller representable \Float.
+ *
+ * These examples show the internally stored values (64-bit hexadecimal)
+ * for each \Float +f+ and for the corresponding <tt>f.pev_float</tt>:
+ *
+ * f = 5e-324 # 0x0000000000000001
+ * f.prev_float # 0x0000000000000000
+ *
+ * f = 0.01 # 0x3f847ae147ae147b
+ * f.prev_float # 0x3f847ae147ae147a
+ *
+ * In the remaining examples here, the output is shown in the usual way
+ * (result +to_s+):
+ *
+ * 0.01.prev_float # => 0.009999999999999998
+ * 1.0.prev_float # => 0.9999999999999999
+ * 100.0.prev_float # => 99.99999999999999
+ *
+ * f = 0.01
+ * (0..3).each_with_index {|i| printf "%2d %-20a %s\n", i, f, f.to_s; f = f.prev_float }
+ *
+ * Output:
+ *
+ * 0 0x1.47ae147ae147bp-7 0.01
+ * 1 0x1.47ae147ae147ap-7 0.009999999999999998
+ * 2 0x1.47ae147ae1479p-7 0.009999999999999997
+ * 3 0x1.47ae147ae1478p-7 0.009999999999999995
+ *
+ * Related: Float#next_float.
+ *
*/
static VALUE
flo_prev_float(VALUE vx)
@@ -1832,124 +2132,124 @@ flo_prev_float(VALUE vx)
VALUE
rb_float_floor(VALUE num, int ndigits)
{
- double number, f;
+ double number;
number = RFLOAT_VALUE(num);
if (number == 0.0) {
- return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
+ return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
}
if (ndigits > 0) {
- int binexp;
- frexp(number, &binexp);
- if (float_round_overflow(ndigits, binexp)) return num;
- if (number > 0.0 && float_round_underflow(ndigits, binexp))
- return DBL2NUM(0.0);
- f = pow(10, ndigits);
- f = floor(number * f) / f;
- return DBL2NUM(f);
+ int binexp;
+ double f, mul, res;
+ frexp(number, &binexp);
+ if (float_round_overflow(ndigits, binexp)) return num;
+ if (number > 0.0 && float_round_underflow(ndigits, binexp))
+ return DBL2NUM(0.0);
+ f = pow(10, ndigits);
+ mul = floor(number * f);
+ res = (mul + 1) / f;
+ if (res > number)
+ res = mul / f;
+ return DBL2NUM(res);
}
else {
- num = dbl2ival(floor(number));
- if (ndigits < 0) num = rb_int_floor(num, ndigits);
- return num;
+ num = dbl2ival(floor(number));
+ if (ndigits < 0) num = rb_int_floor(num, ndigits);
+ return num;
}
}
+static int
+flo_ndigits(int argc, VALUE *argv)
+{
+ if (rb_check_arity(argc, 0, 1)) {
+ return NUM2INT(argv[0]);
+ }
+ return 0;
+}
+
/*
* call-seq:
- * float.floor([ndigits]) -> integer or float
+ * floor(ndigits = 0) -> float or integer
*
- * Returns the largest number less than or equal to +float+ with
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns the largest number less than or equal to +self+ with
+ * a precision of +ndigits+ decimal digits.
*
- * When the precision is negative, the returned value is an integer
- * with at least <code>ndigits.abs</code> trailing zeros.
- *
- * Returns a floating point number when +ndigits+ is positive,
- * otherwise returns an integer.
- *
- * 1.2.floor #=> 1
- * 2.0.floor #=> 2
- * (-1.2).floor #=> -2
- * (-2.0).floor #=> -2
- *
- * 1.234567.floor(2) #=> 1.23
- * 1.234567.floor(3) #=> 1.234
- * 1.234567.floor(4) #=> 1.2345
- * 1.234567.floor(5) #=> 1.23456
- *
- * 34567.89.floor(-5) #=> 0
- * 34567.89.floor(-4) #=> 30000
- * 34567.89.floor(-3) #=> 34000
- * 34567.89.floor(-2) #=> 34500
- * 34567.89.floor(-1) #=> 34560
- * 34567.89.floor(0) #=> 34567
- * 34567.89.floor(1) #=> 34567.8
- * 34567.89.floor(2) #=> 34567.89
- * 34567.89.floor(3) #=> 34567.89
- *
- * Note that the limited precision of floating point arithmetic
- * might lead to surprising results:
+ * When +ndigits+ is positive, returns a float with +ndigits+
+ * digits after the decimal point (as available):
+ *
+ * f = 12345.6789
+ * f.floor(1) # => 12345.6
+ * f.floor(3) # => 12345.678
+ * f = -12345.6789
+ * f.floor(1) # => -12345.7
+ * f.floor(3) # => -12345.679
+ *
+ * When +ndigits+ is non-positive, returns an integer with at least
+ * <code>ndigits.abs</code> trailing zeros:
+ *
+ * f = 12345.6789
+ * f.floor(0) # => 12345
+ * f.floor(-3) # => 12000
+ * f = -12345.6789
+ * f.floor(0) # => -12346
+ * f.floor(-3) # => -13000
+ *
+ * Note that the limited precision of floating-point arithmetic
+ * may lead to surprising results:
*
* (0.3 / 0.1).floor #=> 2 (!)
+ *
+ * Related: Float#ceil.
+ *
*/
static VALUE
flo_floor(int argc, VALUE *argv, VALUE num)
{
- int ndigits = 0;
- if (rb_check_arity(argc, 0, 1)) {
- ndigits = NUM2INT(argv[0]);
- }
+ int ndigits = flo_ndigits(argc, argv);
return rb_float_floor(num, ndigits);
}
/*
* call-seq:
- * float.ceil([ndigits]) -> integer or float
+ * ceil(ndigits = 0) -> float or integer
*
- * Returns the smallest number greater than or equal to +float+ with
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns the smallest number greater than or equal to +self+ with
+ * a precision of +ndigits+ decimal digits.
*
- * When the precision is negative, the returned value is an integer
- * with at least <code>ndigits.abs</code> trailing zeros.
- *
- * Returns a floating point number when +ndigits+ is positive,
- * otherwise returns an integer.
- *
- * 1.2.ceil #=> 2
- * 2.0.ceil #=> 2
- * (-1.2).ceil #=> -1
- * (-2.0).ceil #=> -2
- *
- * 1.234567.ceil(2) #=> 1.24
- * 1.234567.ceil(3) #=> 1.235
- * 1.234567.ceil(4) #=> 1.2346
- * 1.234567.ceil(5) #=> 1.23457
- *
- * 34567.89.ceil(-5) #=> 100000
- * 34567.89.ceil(-4) #=> 40000
- * 34567.89.ceil(-3) #=> 35000
- * 34567.89.ceil(-2) #=> 34600
- * 34567.89.ceil(-1) #=> 34570
- * 34567.89.ceil(0) #=> 34568
- * 34567.89.ceil(1) #=> 34567.9
- * 34567.89.ceil(2) #=> 34567.89
- * 34567.89.ceil(3) #=> 34567.89
- *
- * Note that the limited precision of floating point arithmetic
- * might lead to surprising results:
+ * When +ndigits+ is positive, returns a float with +ndigits+
+ * digits after the decimal point (as available):
+ *
+ * f = 12345.6789
+ * f.ceil(1) # => 12345.7
+ * f.ceil(3) # => 12345.679
+ * f = -12345.6789
+ * f.ceil(1) # => -12345.6
+ * f.ceil(3) # => -12345.678
+ *
+ * When +ndigits+ is non-positive, returns an integer with at least
+ * <code>ndigits.abs</code> trailing zeros:
+ *
+ * f = 12345.6789
+ * f.ceil(0) # => 12346
+ * f.ceil(-3) # => 13000
+ * f = -12345.6789
+ * f.ceil(0) # => -12345
+ * f.ceil(-3) # => -12000
+ *
+ * Note that the limited precision of floating-point arithmetic
+ * may lead to surprising results:
*
* (2.1 / 0.7).ceil #=> 4 (!)
+ *
+ * Related: Float#floor.
+ *
*/
static VALUE
flo_ceil(int argc, VALUE *argv, VALUE num)
{
- int ndigits = 0;
-
- if (rb_check_arity(argc, 0, 1)) {
- ndigits = NUM2INT(argv[0]);
- }
+ int ndigits = flo_ndigits(argc, argv);
return rb_float_ceil(num, ndigits);
}
@@ -1960,22 +2260,22 @@ rb_float_ceil(VALUE num, int ndigits)
number = RFLOAT_VALUE(num);
if (number == 0.0) {
- return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
+ return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
}
if (ndigits > 0) {
- int binexp;
- frexp(number, &binexp);
- if (float_round_overflow(ndigits, binexp)) return num;
- if (number < 0.0 && float_round_underflow(ndigits, binexp))
- return DBL2NUM(0.0);
- f = pow(10, ndigits);
- f = ceil(number * f) / f;
- return DBL2NUM(f);
+ int binexp;
+ frexp(number, &binexp);
+ if (float_round_overflow(ndigits, binexp)) return num;
+ if (number < 0.0 && float_round_underflow(ndigits, binexp))
+ return DBL2NUM(0.0);
+ f = pow(10, ndigits);
+ f = ceil(number * f) / f;
+ return DBL2NUM(f);
}
else {
- num = dbl2ival(ceil(number));
- if (ndigits < 0) num = rb_int_ceil(num, ndigits);
- return num;
+ num = dbl2ival(ceil(number));
+ if (ndigits < 0) num = rb_int_ceil(num, ndigits);
+ return num;
}
}
@@ -1986,13 +2286,13 @@ int_round_zero_p(VALUE num, int ndigits)
/* If 10**N / 2 > num, then return 0 */
/* We have log_256(10) > 0.415241 and log_256(1/2) = -0.125, so */
if (FIXNUM_P(num)) {
- bytes = sizeof(long);
+ bytes = sizeof(long);
}
- else if (RB_TYPE_P(num, T_BIGNUM)) {
- bytes = rb_big_size(num);
+ else if (RB_BIGNUM_TYPE_P(num)) {
+ bytes = rb_big_size(num);
}
else {
- bytes = NUM2LONG(rb_funcall(num, idSize, 0));
+ bytes = NUM2LONG(rb_funcall(num, idSize, 0));
}
return (-0.415241 * ndigits - 0.125 > bytes);
}
@@ -2002,7 +2302,7 @@ int_round_half_even(SIGNED_VALUE x, SIGNED_VALUE y)
{
SIGNED_VALUE z = +(x + y / 2) / y;
if ((z * y - x) * 2 == y) {
- z &= ~1;
+ z &= ~1;
}
return z * y;
}
@@ -2038,7 +2338,7 @@ int_half_p_half_down(VALUE num, VALUE n, VALUE f)
}
/*
- * Assumes num is an Integer, ndigits <= 0
+ * Assumes num is an \Integer, ndigits <= 0
*/
static VALUE
rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode)
@@ -2046,29 +2346,29 @@ rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode)
VALUE n, f, h, r;
if (int_round_zero_p(num, ndigits)) {
- return INT2FIX(0);
+ return INT2FIX(0);
}
f = int_pow(10, -ndigits);
if (FIXNUM_P(num) && FIXNUM_P(f)) {
- SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
- int neg = x < 0;
- if (neg) x = -x;
- x = ROUND_CALL(mode, int_round, (x, y));
- if (neg) x = -x;
- return LONG2NUM(x);
+ SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
+ int neg = x < 0;
+ if (neg) x = -x;
+ x = ROUND_CALL(mode, int_round, (x, y));
+ if (neg) x = -x;
+ return LONG2NUM(x);
}
- if (RB_TYPE_P(f, T_FLOAT)) {
- /* then int_pow overflow */
- return INT2FIX(0);
+ if (RB_FLOAT_TYPE_P(f)) {
+ /* then int_pow overflow */
+ return INT2FIX(0);
}
h = rb_int_idiv(f, INT2FIX(2));
r = rb_int_modulo(num, f);
n = rb_int_minus(num, r);
r = rb_int_cmp(r, h);
if (FIXNUM_POSITIVE_P(r) ||
- (FIXNUM_ZERO_P(r) && ROUND_CALL(mode, int_half_p, (num, n, f)))) {
- n = rb_int_plus(n, f);
+ (FIXNUM_ZERO_P(r) && ROUND_CALL(mode, int_half_p, (num, n, f)))) {
+ n = rb_int_plus(n, f);
}
return n;
}
@@ -2079,19 +2379,19 @@ rb_int_floor(VALUE num, int ndigits)
VALUE f;
if (int_round_zero_p(num, ndigits))
- return INT2FIX(0);
+ return INT2FIX(0);
f = int_pow(10, -ndigits);
if (FIXNUM_P(num) && FIXNUM_P(f)) {
- SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
- int neg = x < 0;
- if (neg) x = -x + y - 1;
- x = x / y * y;
- if (neg) x = -x;
- return LONG2NUM(x);
+ SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
+ int neg = x < 0;
+ if (neg) x = -x + y - 1;
+ x = x / y * y;
+ if (neg) x = -x;
+ return LONG2NUM(x);
}
- if (RB_TYPE_P(f, T_FLOAT)) {
- /* then int_pow overflow */
- return INT2FIX(0);
+ if (RB_FLOAT_TYPE_P(f)) {
+ /* then int_pow overflow */
+ return INT2FIX(0);
}
return rb_int_minus(num, rb_int_modulo(num, f));
}
@@ -2102,20 +2402,20 @@ rb_int_ceil(VALUE num, int ndigits)
VALUE f;
if (int_round_zero_p(num, ndigits))
- return INT2FIX(0);
+ return INT2FIX(0);
f = int_pow(10, -ndigits);
if (FIXNUM_P(num) && FIXNUM_P(f)) {
- SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
- int neg = x < 0;
- if (neg) x = -x;
- else x += y - 1;
- x = (x / y) * y;
- if (neg) x = -x;
- return LONG2NUM(x);
- }
- if (RB_TYPE_P(f, T_FLOAT)) {
- /* then int_pow overflow */
- return INT2FIX(0);
+ SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
+ int neg = x < 0;
+ if (neg) x = -x;
+ else x += y - 1;
+ x = (x / y) * y;
+ if (neg) x = -x;
+ return LONG2NUM(x);
+ }
+ if (RB_FLOAT_TYPE_P(f)) {
+ /* then int_pow overflow */
+ return INT2FIX(0);
}
return rb_int_plus(num, rb_int_minus(f, rb_int_modulo(num, f)));
}
@@ -2127,79 +2427,82 @@ rb_int_truncate(VALUE num, int ndigits)
VALUE m;
if (int_round_zero_p(num, ndigits))
- return INT2FIX(0);
+ return INT2FIX(0);
f = int_pow(10, -ndigits);
if (FIXNUM_P(num) && FIXNUM_P(f)) {
- SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
- int neg = x < 0;
- if (neg) x = -x;
- x = x / y * y;
- if (neg) x = -x;
- return LONG2NUM(x);
+ SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
+ int neg = x < 0;
+ if (neg) x = -x;
+ x = x / y * y;
+ if (neg) x = -x;
+ return LONG2NUM(x);
}
- if (RB_TYPE_P(f, T_FLOAT)) {
- /* then int_pow overflow */
- return INT2FIX(0);
+ if (RB_FLOAT_TYPE_P(f)) {
+ /* then int_pow overflow */
+ return INT2FIX(0);
}
m = rb_int_modulo(num, f);
if (int_neg_p(num)) {
- return rb_int_plus(num, rb_int_minus(f, m));
+ return rb_int_plus(num, rb_int_minus(f, m));
}
else {
- return rb_int_minus(num, m);
+ return rb_int_minus(num, m);
}
}
/*
* call-seq:
- * float.round([ndigits] [, half: mode]) -> integer or float
+ * round(ndigits = 0, half: :up) -> integer or float
*
- * Returns +float+ rounded to the nearest value with
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns +self+ rounded to the nearest value with
+ * a precision of +ndigits+ decimal digits.
+ *
+ * When +ndigits+ is non-negative, returns a float with +ndigits+
+ * after the decimal point (as available):
+ *
+ * f = 12345.6789
+ * f.round(1) # => 12345.7
+ * f.round(3) # => 12345.679
+ * f = -12345.6789
+ * f.round(1) # => -12345.7
+ * f.round(3) # => -12345.679
+ *
+ * When +ndigits+ is negative, returns an integer
+ * with at least <tt>ndigits.abs</tt> trailing zeros:
+ *
+ * f = 12345.6789
+ * f.round(0) # => 12346
+ * f.round(-3) # => 12000
+ * f = -12345.6789
+ * f.round(0) # => -12346
+ * f.round(-3) # => -12000
+ *
+ * If keyword argument +half+ is given,
+ * and +self+ is equidistant from the two candidate values,
+ * the rounding is according to the given +half+ value:
+ *
+ * - +:up+ or +nil+: round away from zero:
+ *
+ * 2.5.round(half: :up) # => 3
+ * 3.5.round(half: :up) # => 4
+ * (-2.5).round(half: :up) # => -3
+ *
+ * - +:down+: round toward zero:
+ *
+ * 2.5.round(half: :down) # => 2
+ * 3.5.round(half: :down) # => 3
+ * (-2.5).round(half: :down) # => -2
+ *
+ * - +:even+: round toward the candidate whose last nonzero digit is even:
+ *
+ * 2.5.round(half: :even) # => 2
+ * 3.5.round(half: :even) # => 4
+ * (-2.5).round(half: :even) # => -2
+ *
+ * Raises and exception if the value for +half+ is invalid.
+ *
+ * Related: Float#truncate.
*
- * When the precision is negative, the returned value is an integer
- * with at least <code>ndigits.abs</code> trailing zeros.
- *
- * Returns a floating point number when +ndigits+ is positive,
- * otherwise returns an integer.
- *
- * 1.4.round #=> 1
- * 1.5.round #=> 2
- * 1.6.round #=> 2
- * (-1.5).round #=> -2
- *
- * 1.234567.round(2) #=> 1.23
- * 1.234567.round(3) #=> 1.235
- * 1.234567.round(4) #=> 1.2346
- * 1.234567.round(5) #=> 1.23457
- *
- * 34567.89.round(-5) #=> 0
- * 34567.89.round(-4) #=> 30000
- * 34567.89.round(-3) #=> 35000
- * 34567.89.round(-2) #=> 34600
- * 34567.89.round(-1) #=> 34570
- * 34567.89.round(0) #=> 34568
- * 34567.89.round(1) #=> 34567.9
- * 34567.89.round(2) #=> 34567.89
- * 34567.89.round(3) #=> 34567.89
- *
- * If the optional +half+ keyword argument is given,
- * numbers that are half-way between two possible rounded values
- * will be rounded according to the specified tie-breaking +mode+:
- *
- * * <code>:up</code> or +nil+: round half away from zero (default)
- * * <code>:down</code>: round half toward zero
- * * <code>:even</code>: round half toward the nearest even number
- *
- * 2.5.round(half: :up) #=> 3
- * 2.5.round(half: :down) #=> 2
- * 2.5.round(half: :even) #=> 2
- * 3.5.round(half: :up) #=> 4
- * 3.5.round(half: :down) #=> 3
- * 3.5.round(half: :even) #=> 4
- * (-2.5).round(half: :up) #=> -3
- * (-2.5).round(half: :down) #=> -2
- * (-2.5).round(half: :even) #=> -2
*/
static VALUE
@@ -2211,28 +2514,32 @@ flo_round(int argc, VALUE *argv, VALUE num)
enum ruby_num_rounding_mode mode;
if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
- ndigits = NUM2INT(nd);
+ ndigits = NUM2INT(nd);
}
mode = rb_num_get_rounding_option(opt);
number = RFLOAT_VALUE(num);
if (number == 0.0) {
- return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
+ return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
}
if (ndigits < 0) {
- return rb_int_round(flo_to_i(num), ndigits, mode);
+ return rb_int_round(flo_to_i(num), ndigits, mode);
}
if (ndigits == 0) {
- x = ROUND_CALL(mode, round, (number, 1.0));
- return dbl2ival(x);
+ x = ROUND_CALL(mode, round, (number, 1.0));
+ return dbl2ival(x);
}
if (isfinite(number)) {
- int binexp;
- frexp(number, &binexp);
- if (float_round_overflow(ndigits, binexp)) return num;
- if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
- f = pow(10, ndigits);
- x = ROUND_CALL(mode, round, (number, f));
- return DBL2NUM(x / f);
+ int binexp;
+ frexp(number, &binexp);
+ if (float_round_overflow(ndigits, binexp)) return num;
+ if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
+ if (ndigits > 14) {
+ /* In this case, pow(10, ndigits) may not be accurate. */
+ return rb_flo_round_by_rational(argc, argv, num);
+ }
+ f = pow(10, ndigits);
+ x = ROUND_CALL(mode, round, (number, f));
+ return DBL2NUM(x / f);
}
return num;
}
@@ -2250,17 +2557,17 @@ float_round_overflow(int ndigits, int binexp)
If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
if ndigits + exp < 0, the result is 0.
We have:
- 2 ** (binexp-1) <= |number| < 2 ** binexp
- 10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
- If binexp >= 0, and since log_2(10) = 3.322259:
- 10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
- floor(binexp/4) <= exp <= ceil(binexp/3)
- If binexp <= 0, swap the /4 and the /3
- So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
- If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
+ 2 ** (binexp-1) <= |number| < 2 ** binexp
+ 10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
+ If binexp >= 0, and since log_2(10) = 3.322259:
+ 10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
+ floor(binexp/4) <= exp <= ceil(binexp/3)
+ If binexp <= 0, swap the /4 and the /3
+ So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
+ If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
*/
if (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1)) {
- return TRUE;
+ return TRUE;
}
return FALSE;
}
@@ -2269,27 +2576,25 @@ static int
float_round_underflow(int ndigits, int binexp)
{
if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
- return TRUE;
+ return TRUE;
}
return FALSE;
}
/*
* call-seq:
- * float.to_i -> integer
- * float.to_int -> integer
+ * to_i -> integer
*
- * Returns the +float+ truncated to an Integer.
+ * Returns +self+ truncated to an Integer.
*
- * 1.2.to_i #=> 1
- * (-1.2).to_i #=> -1
+ * 1.2.to_i # => 1
+ * (-1.2).to_i # => -1
*
- * Note that the limited precision of floating point arithmetic
- * might lead to surprising results:
+ * Note that the limited precision of floating-point arithmetic
+ * may lead to surprising results:
*
- * (0.3 / 0.1).to_i #=> 2 (!)
+ * (0.3 / 0.1).to_i # => 2 (!)
*
- * #to_int is an alias for #to_i.
*/
static VALUE
@@ -2305,44 +2610,56 @@ flo_to_i(VALUE num)
/*
* call-seq:
- * float.truncate([ndigits]) -> integer or float
+ * truncate(ndigits = 0) -> float or integer
*
- * Returns +float+ truncated (toward zero) to
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns +self+ truncated (toward zero) to
+ * a precision of +ndigits+ decimal digits.
*
- * When the precision is negative, the returned value is an integer
- * with at least <code>ndigits.abs</code> trailing zeros.
+ * When +ndigits+ is positive, returns a float with +ndigits+ digits
+ * after the decimal point (as available):
+ *
+ * f = 12345.6789
+ * f.truncate(1) # => 12345.6
+ * f.truncate(3) # => 12345.678
+ * f = -12345.6789
+ * f.truncate(1) # => -12345.6
+ * f.truncate(3) # => -12345.678
*
- * Returns a floating point number when +ndigits+ is positive,
- * otherwise returns an integer.
+ * When +ndigits+ is negative, returns an integer
+ * with at least <tt>ndigits.abs</tt> trailing zeros:
*
- * 2.8.truncate #=> 2
- * (-2.8).truncate #=> -2
- * 1.234567.truncate(2) #=> 1.23
- * 34567.89.truncate(-2) #=> 34500
+ * f = 12345.6789
+ * f.truncate(0) # => 12345
+ * f.truncate(-3) # => 12000
+ * f = -12345.6789
+ * f.truncate(0) # => -12345
+ * f.truncate(-3) # => -12000
*
- * Note that the limited precision of floating point arithmetic
- * might lead to surprising results:
+ * Note that the limited precision of floating-point arithmetic
+ * may lead to surprising results:
*
* (0.3 / 0.1).truncate #=> 2 (!)
+ *
+ * Related: Float#round.
+ *
*/
static VALUE
flo_truncate(int argc, VALUE *argv, VALUE num)
{
if (signbit(RFLOAT_VALUE(num)))
- return flo_ceil(argc, argv, num);
+ return flo_ceil(argc, argv, num);
else
- return flo_floor(argc, argv, num);
+ return flo_floor(argc, argv, num);
}
/*
* call-seq:
- * num.floor([ndigits]) -> integer or float
+ * floor(digits = 0) -> integer or float
*
- * Returns the largest number less than or equal to +num+ with
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns the largest number that is less than or equal to +self+ with
+ * a precision of +digits+ decimal digits.
*
- * Numeric implements this by converting its value to a Float and
+ * \Numeric implements this by converting +self+ to a Float and
* invoking Float#floor.
*/
@@ -2354,12 +2671,12 @@ num_floor(int argc, VALUE *argv, VALUE num)
/*
* call-seq:
- * num.ceil([ndigits]) -> integer or float
+ * ceil(digits = 0) -> integer or float
*
- * Returns the smallest number greater than or equal to +num+ with
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns the smallest number that is greater than or equal to +self+ with
+ * a precision of +digits+ decimal digits.
*
- * Numeric implements this by converting its value to a Float and
+ * \Numeric implements this by converting +self+ to a Float and
* invoking Float#ceil.
*/
@@ -2371,12 +2688,12 @@ num_ceil(int argc, VALUE *argv, VALUE num)
/*
* call-seq:
- * num.round([ndigits]) -> integer or float
+ * round(digits = 0) -> integer or float
*
- * Returns +num+ rounded to the nearest value with
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns +self+ rounded to the nearest value with
+ * a precision of +digits+ decimal digits.
*
- * Numeric implements this by converting its value to a Float and
+ * \Numeric implements this by converting +self+ to a Float and
* invoking Float#round.
*/
@@ -2388,12 +2705,12 @@ num_round(int argc, VALUE* argv, VALUE num)
/*
* call-seq:
- * num.truncate([ndigits]) -> integer or float
+ * truncate(digits = 0) -> integer or float
*
- * Returns +num+ truncated (toward zero) to
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns +self+ truncated (toward zero) to
+ * a precision of +digits+ decimal digits.
*
- * Numeric implements this by converting its value to a Float and
+ * \Numeric implements this by converting +self+ to a Float and
* invoking Float#truncate.
*/
@@ -2407,27 +2724,45 @@ double
ruby_float_step_size(double beg, double end, double unit, int excl)
{
const double epsilon = DBL_EPSILON;
- double n, err;
+ double d, n, err;
if (unit == 0) {
return HUGE_VAL;
}
- n= (end - beg)/unit;
- err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon;
if (isinf(unit)) {
- return unit > 0 ? beg <= end : beg >= end;
+ return unit > 0 ? beg <= end : beg >= end;
}
+ n= (end - beg)/unit;
+ err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon;
if (err>0.5) err=0.5;
if (excl) {
- if (n<=0) return 0;
- if (n<1)
- n = 0;
- else
- n = floor(n - err);
+ if (n<=0) return 0;
+ if (n<1)
+ n = 0;
+ else
+ n = floor(n - err);
+ d = +((n + 1) * unit) + beg;
+ if (beg < end) {
+ if (d < end)
+ n++;
+ }
+ else if (beg > end) {
+ if (d > end)
+ n++;
+ }
}
else {
- if (n<0) return 0;
- n = floor(n + err);
+ if (n<0) return 0;
+ n = floor(n + err);
+ d = +((n + 1) * unit) + beg;
+ if (beg < end) {
+ if (d <= end)
+ n++;
+ }
+ else if (beg > end) {
+ if (d >= end)
+ n++;
+ }
}
return n+1;
}
@@ -2435,30 +2770,30 @@ ruby_float_step_size(double beg, double end, double unit, int excl)
int
ruby_float_step(VALUE from, VALUE to, VALUE step, int excl, int allow_endless)
{
- if (RB_TYPE_P(from, T_FLOAT) || RB_TYPE_P(to, T_FLOAT) || RB_TYPE_P(step, T_FLOAT)) {
+ if (RB_FLOAT_TYPE_P(from) || RB_FLOAT_TYPE_P(to) || RB_FLOAT_TYPE_P(step)) {
double unit = NUM2DBL(step);
- double beg = NUM2DBL(from);
+ double beg = NUM2DBL(from);
double end = (allow_endless && NIL_P(to)) ? (unit < 0 ? -1 : 1)*HUGE_VAL : NUM2DBL(to);
- double n = ruby_float_step_size(beg, end, unit, excl);
- long i;
-
- if (isinf(unit)) {
- /* if unit is infinity, i*unit+beg is NaN */
- if (n) rb_yield(DBL2NUM(beg));
- }
- else if (unit == 0) {
- VALUE val = DBL2NUM(beg);
- for (;;)
- rb_yield(val);
- }
- else {
- for (i=0; i<n; i++) {
- double d = i*unit+beg;
- if (unit >= 0 ? end < d : d < end) d = end;
- rb_yield(DBL2NUM(d));
- }
- }
- return TRUE;
+ double n = ruby_float_step_size(beg, end, unit, excl);
+ long i;
+
+ if (isinf(unit)) {
+ /* if unit is infinity, i*unit+beg is NaN */
+ if (n) rb_yield(DBL2NUM(beg));
+ }
+ else if (unit == 0) {
+ VALUE val = DBL2NUM(beg);
+ for (;;)
+ rb_yield(val);
+ }
+ else {
+ for (i=0; i<n; i++) {
+ double d = i*unit+beg;
+ if (unit >= 0 ? end < d : d < end) d = end;
+ rb_yield(DBL2NUM(d));
+ }
+ }
+ return TRUE;
}
return FALSE;
}
@@ -2467,45 +2802,45 @@ VALUE
ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl)
{
if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
- long delta, diff;
-
- diff = FIX2LONG(step);
- if (diff == 0) {
- return DBL2NUM(HUGE_VAL);
- }
- delta = FIX2LONG(to) - FIX2LONG(from);
- if (diff < 0) {
- diff = -diff;
- delta = -delta;
- }
- if (excl) {
- delta--;
- }
- if (delta < 0) {
- return INT2FIX(0);
- }
- return ULONG2NUM(delta / diff + 1UL);
- }
- else if (RB_TYPE_P(from, T_FLOAT) || RB_TYPE_P(to, T_FLOAT) || RB_TYPE_P(step, T_FLOAT)) {
- double n = ruby_float_step_size(NUM2DBL(from), NUM2DBL(to), NUM2DBL(step), excl);
-
- if (isinf(n)) return DBL2NUM(n);
- if (POSFIXABLE(n)) return LONG2FIX((long)n);
- return rb_dbl2big(n);
+ long delta, diff;
+
+ diff = FIX2LONG(step);
+ if (diff == 0) {
+ return DBL2NUM(HUGE_VAL);
+ }
+ delta = FIX2LONG(to) - FIX2LONG(from);
+ if (diff < 0) {
+ diff = -diff;
+ delta = -delta;
+ }
+ if (excl) {
+ delta--;
+ }
+ if (delta < 0) {
+ return INT2FIX(0);
+ }
+ return ULONG2NUM(delta / diff + 1UL);
+ }
+ else if (RB_FLOAT_TYPE_P(from) || RB_FLOAT_TYPE_P(to) || RB_FLOAT_TYPE_P(step)) {
+ double n = ruby_float_step_size(NUM2DBL(from), NUM2DBL(to), NUM2DBL(step), excl);
+
+ if (isinf(n)) return DBL2NUM(n);
+ if (POSFIXABLE(n)) return LONG2FIX((long)n);
+ return rb_dbl2big(n);
}
else {
- VALUE result;
- ID cmp = '>';
- switch (rb_cmpint(rb_num_coerce_cmp(step, INT2FIX(0), id_cmp), step, INT2FIX(0))) {
- case 0: return DBL2NUM(HUGE_VAL);
- case -1: cmp = '<'; break;
- }
- if (RTEST(rb_funcall(from, cmp, 1, to))) return INT2FIX(0);
- result = rb_funcall(rb_funcall(to, '-', 1, from), id_div, 1, step);
- if (!excl || RTEST(rb_funcall(rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step)), cmp, 1, to))) {
- result = rb_funcall(result, '+', 1, INT2FIX(1));
- }
- return result;
+ VALUE result;
+ ID cmp = '>';
+ switch (rb_cmpint(rb_num_coerce_cmp(step, INT2FIX(0), id_cmp), step, INT2FIX(0))) {
+ case 0: return DBL2NUM(HUGE_VAL);
+ case -1: cmp = '<'; break;
+ }
+ if (RTEST(rb_funcall(from, cmp, 1, to))) return INT2FIX(0);
+ result = rb_funcall(rb_funcall(to, '-', 1, from), id_div, 1, step);
+ if (!excl || RTEST(rb_funcall(to, cmp, 1, rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step))))) {
+ result = rb_funcall(result, '+', 1, INT2FIX(1));
+ }
+ return result;
}
}
@@ -2517,17 +2852,17 @@ num_step_negative_p(VALUE num)
VALUE r;
if (FIXNUM_P(num)) {
- if (method_basic_p(rb_cInteger))
- return (SIGNED_VALUE)num < 0;
+ if (method_basic_p(rb_cInteger))
+ return (SIGNED_VALUE)num < 0;
}
- else if (RB_TYPE_P(num, T_BIGNUM)) {
- if (method_basic_p(rb_cInteger))
- return BIGNUM_NEGATIVE_P(num);
+ else if (RB_BIGNUM_TYPE_P(num)) {
+ if (method_basic_p(rb_cInteger))
+ return BIGNUM_NEGATIVE_P(num);
}
r = rb_check_funcall(num, '>', 1, &zero);
- if (r == Qundef) {
- coerce_failed(num, INT2FIX(0));
+ if (UNDEF_P(r)) {
+ coerce_failed(num, INT2FIX(0));
}
return !RTEST(r);
}
@@ -2539,19 +2874,19 @@ num_step_extract_args(int argc, const VALUE *argv, VALUE *to, VALUE *step, VALUE
argc = rb_scan_args(argc, argv, "02:", to, step, &hash);
if (!NIL_P(hash)) {
- ID keys[2];
- VALUE values[2];
- keys[0] = id_to;
- keys[1] = id_by;
- rb_get_kwargs(hash, keys, 0, 2, values);
- if (values[0] != Qundef) {
- if (argc > 0) rb_raise(rb_eArgError, "to is given twice");
- *to = values[0];
- }
- if (values[1] != Qundef) {
- if (argc > 1) rb_raise(rb_eArgError, "step is given twice");
- *by = values[1];
- }
+ ID keys[2];
+ VALUE values[2];
+ keys[0] = id_to;
+ keys[1] = id_by;
+ rb_get_kwargs(hash, keys, 0, 2, values);
+ if (!UNDEF_P(values[0])) {
+ if (argc > 0) rb_raise(rb_eArgError, "to is given twice");
+ *to = values[0];
+ }
+ if (!UNDEF_P(values[1])) {
+ if (argc > 1) rb_raise(rb_eArgError, "step is given twice");
+ *by = values[1];
+ }
}
return argc;
@@ -2561,7 +2896,7 @@ static int
num_step_check_fix_args(int argc, VALUE *to, VALUE *step, VALUE by, int fix_nil, int allow_zero_step)
{
int desc;
- if (by != Qundef) {
+ if (!UNDEF_P(by)) {
*step = by;
}
else {
@@ -2574,7 +2909,7 @@ num_step_check_fix_args(int argc, VALUE *to, VALUE *step, VALUE by, int fix_nil,
rb_raise(rb_eArgError, "step can't be 0");
}
if (NIL_P(*step)) {
- *step = INT2FIX(1);
+ *step = INT2FIX(1);
}
desc = num_step_negative_p(*step);
if (fix_nil && NIL_P(*to)) {
@@ -2605,58 +2940,98 @@ num_step_size(VALUE from, VALUE args, VALUE eobj)
/*
* call-seq:
- * num.step(by: step, to: limit) {|i| block } -> self
- * num.step(by: step, to: limit) -> an_enumerator
- * num.step(by: step, to: limit) -> an_arithmetic_sequence
- * num.step(limit=nil, step=1) {|i| block } -> self
- * num.step(limit=nil, step=1) -> an_enumerator
- * num.step(limit=nil, step=1) -> an_arithmetic_sequence
- *
- * Invokes the given block with the sequence of numbers starting at +num+,
- * incremented by +step+ (defaulted to +1+) on each call.
- *
- * The loop finishes when the value to be passed to the block is greater than
- * +limit+ (if +step+ is positive) or less than +limit+ (if +step+ is
- * negative), where +limit+ is defaulted to infinity.
- *
- * In the recommended keyword argument style, either or both of
- * +step+ and +limit+ (default infinity) can be omitted. In the
- * fixed position argument style, zero as a step
- * (i.e. <code>num.step(limit, 0)</code>) is not allowed for historical
- * compatibility reasons.
- *
- * If all the arguments are integers, the loop operates using an integer
- * counter.
- *
- * If any of the arguments are floating point numbers, all are converted
- * to floats, and the loop is executed
- * <i>floor(n + n*Float::EPSILON) + 1</i> times,
- * where <i>n = (limit - num)/step</i>.
- *
- * Otherwise, the loop starts at +num+, uses either the
- * less-than (<code><</code>) or greater-than (<code>></code>) operator
- * to compare the counter against +limit+,
- * and increments itself using the <code>+</code> operator.
- *
- * If no block is given, an Enumerator is returned instead.
- * Especially, the enumerator is an Enumerator::ArithmeticSequence
- * if both +limit+ and +step+ are kind of Numeric or <code>nil</code>.
- *
- * For example:
- *
- * p 1.step.take(4)
- * p 10.step(by: -1).take(4)
- * 3.step(to: 5) {|i| print i, " " }
- * 1.step(10, 2) {|i| print i, " " }
- * Math::E.step(to: Math::PI, by: 0.2) {|f| print f, " " }
- *
- * Will produce:
- *
- * [1, 2, 3, 4]
- * [10, 9, 8, 7]
- * 3 4 5
- * 1 3 5 7 9
- * 2.718281828459045 2.9182818284590453 3.118281828459045
+ * step(to = nil, by = 1) {|n| ... } -> self
+ * step(to = nil, by = 1) -> enumerator
+ * step(to = nil, by: 1) {|n| ... } -> self
+ * step(to = nil, by: 1) -> enumerator
+ * step(by: 1, to: ) {|n| ... } -> self
+ * step(by: 1, to: ) -> enumerator
+ * step(by: , to: nil) {|n| ... } -> self
+ * step(by: , to: nil) -> enumerator
+ *
+ * Generates a sequence of numbers; with a block given, traverses the sequence.
+ *
+ * Of the Core and Standard Library classes,
+ * Integer, Float, and Rational use this implementation.
+ *
+ * A quick example:
+ *
+ * squares = []
+ * 1.step(by: 2, to: 10) {|i| squares.push(i*i) }
+ * squares # => [1, 9, 25, 49, 81]
+ *
+ * The generated sequence:
+ *
+ * - Begins with +self+.
+ * - Continues at intervals of +by+ (which may not be zero).
+ * - Ends with the last number that is within or equal to +to+;
+ * that is, less than or equal to +to+ if +by+ is positive,
+ * greater than or equal to +to+ if +by+ is negative.
+ * If +to+ is +nil+, the sequence is of infinite length.
+ *
+ * If a block is given, calls the block with each number in the sequence;
+ * returns +self+. If no block is given, returns an Enumerator::ArithmeticSequence.
+ *
+ * <b>Keyword Arguments</b>
+ *
+ * With keyword arguments +by+ and +to+,
+ * their values (or defaults) determine the step and limit:
+ *
+ * # Both keywords given.
+ * squares = []
+ * 4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4
+ * squares # => [16, 36, 64, 100]
+ * cubes = []
+ * 3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
+ * cubes # => [27.0, 3.375, 0.0, -3.375, -27.0]
+ * squares = []
+ * 1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
+ * squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
+ *
+ * squares = []
+ * Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
+ * squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
+ *
+ * # Only keyword to given.
+ * squares = []
+ * 4.step(to: 10) {|i| squares.push(i*i) } # => 4
+ * squares # => [16, 25, 36, 49, 64, 81, 100]
+ * # Only by given.
+ *
+ * # Only keyword by given
+ * squares = []
+ * 4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
+ * squares # => [16, 36, 64, 100, 144]
+ *
+ * # No block given.
+ * e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
+ * e.class # => Enumerator::ArithmeticSequence
+ *
+ * <b>Positional Arguments</b>
+ *
+ * With optional positional arguments +to+ and +by+,
+ * their values (or defaults) determine the step and limit:
+ *
+ * squares = []
+ * 4.step(10, 2) {|i| squares.push(i*i) } # => 4
+ * squares # => [16, 36, 64, 100]
+ * squares = []
+ * 4.step(10) {|i| squares.push(i*i) }
+ * squares # => [16, 25, 36, 49, 64, 81, 100]
+ * squares = []
+ * 4.step {|i| squares.push(i*i); break if i > 10 } # => nil
+ * squares # => [16, 25, 36, 49, 64, 81, 100, 121]
+ *
+ * <b>Implementation Notes</b>
+ *
+ * If all the arguments are integers, the loop operates using an integer
+ * counter.
+ *
+ * If any of the arguments are floating point numbers, all are converted
+ * to floats, and the loop is executed
+ * <i>floor(n + n*Float::EPSILON) + 1</i> times,
+ * where <i>n = (limit - self)/step</i>.
+ *
*/
static VALUE
@@ -2669,7 +3044,7 @@ num_step(int argc, VALUE *argv, VALUE from)
VALUE by = Qundef;
num_step_extract_args(argc, argv, &to, &step, &by);
- if (by != Qundef) {
+ if (!UNDEF_P(by)) {
step = by;
}
if (NIL_P(step)) {
@@ -2684,53 +3059,53 @@ num_step(int argc, VALUE *argv, VALUE from)
num_step_size, from, to, step, FALSE);
}
- return SIZED_ENUMERATOR(from, 2, ((VALUE [2]){to, step}), num_step_size);
+ return SIZED_ENUMERATOR_KW(from, 2, ((VALUE [2]){to, step}), num_step_size, FALSE);
}
desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
if (rb_equal(step, INT2FIX(0))) {
- inf = 1;
+ inf = 1;
}
- else if (RB_TYPE_P(to, T_FLOAT)) {
- double f = RFLOAT_VALUE(to);
- inf = isinf(f) && (signbit(f) ? desc : !desc);
+ else if (RB_FLOAT_TYPE_P(to)) {
+ double f = RFLOAT_VALUE(to);
+ inf = isinf(f) && (signbit(f) ? desc : !desc);
}
else inf = 0;
if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
- long i = FIX2LONG(from);
- long diff = FIX2LONG(step);
-
- if (inf) {
- for (;; i += diff)
- rb_yield(LONG2FIX(i));
- }
- else {
- long end = FIX2LONG(to);
-
- if (desc) {
- for (; i >= end; i += diff)
- rb_yield(LONG2FIX(i));
- }
- else {
- for (; i <= end; i += diff)
- rb_yield(LONG2FIX(i));
- }
- }
+ long i = FIX2LONG(from);
+ long diff = FIX2LONG(step);
+
+ if (inf) {
+ for (;; i += diff)
+ rb_yield(LONG2FIX(i));
+ }
+ else {
+ long end = FIX2LONG(to);
+
+ if (desc) {
+ for (; i >= end; i += diff)
+ rb_yield(LONG2FIX(i));
+ }
+ else {
+ for (; i <= end; i += diff)
+ rb_yield(LONG2FIX(i));
+ }
+ }
}
else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
- VALUE i = from;
+ VALUE i = from;
- if (inf) {
- for (;; i = rb_funcall(i, '+', 1, step))
- rb_yield(i);
- }
- else {
- ID cmp = desc ? '<' : '>';
+ if (inf) {
+ for (;; i = rb_funcall(i, '+', 1, step))
+ rb_yield(i);
+ }
+ else {
+ ID cmp = desc ? '<' : '>';
- for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
- rb_yield(i);
- }
+ for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
+ rb_yield(i);
+ }
}
return from;
}
@@ -2749,7 +3124,7 @@ out_of_range_float(char (*pbuf)[24], VALUE val)
#define FLOAT_OUT_OF_RANGE(val, type) do { \
char buf[24]; \
rb_raise(rb_eRangeError, "float %s out of range of "type, \
- out_of_range_float(&buf, (val))); \
+ out_of_range_float(&buf, (val))); \
} while (0)
#define LONG_MIN_MINUS_ONE ((double)LONG_MIN-1)
@@ -2765,26 +3140,26 @@ rb_num2long(VALUE val)
{
again:
if (NIL_P(val)) {
- rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
+ rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
}
if (FIXNUM_P(val)) return FIX2LONG(val);
- else if (RB_TYPE_P(val, T_FLOAT)) {
- if (RFLOAT_VALUE(val) < LONG_MAX_PLUS_ONE
- && LONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) {
- return (long)RFLOAT_VALUE(val);
- }
- else {
- FLOAT_OUT_OF_RANGE(val, "integer");
- }
+ else if (RB_FLOAT_TYPE_P(val)) {
+ if (RFLOAT_VALUE(val) < LONG_MAX_PLUS_ONE
+ && LONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) {
+ return (long)RFLOAT_VALUE(val);
+ }
+ else {
+ FLOAT_OUT_OF_RANGE(val, "integer");
+ }
}
- else if (RB_TYPE_P(val, T_BIGNUM)) {
- return rb_big2long(val);
+ else if (RB_BIGNUM_TYPE_P(val)) {
+ return rb_big2long(val);
}
else {
- val = rb_to_int(val);
- goto again;
+ val = rb_to_int(val);
+ goto again;
}
}
@@ -2793,7 +3168,7 @@ rb_num2ulong_internal(VALUE val, int *wrap_p)
{
again:
if (NIL_P(val)) {
- rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
+ rb_raise(rb_eTypeError, "no implicit conversion of nil into Integer");
}
if (FIXNUM_P(val)) {
@@ -2802,20 +3177,20 @@ rb_num2ulong_internal(VALUE val, int *wrap_p)
*wrap_p = l < 0;
return (unsigned long)l;
}
- else if (RB_TYPE_P(val, T_FLOAT)) {
- double d = RFLOAT_VALUE(val);
- if (d < ULONG_MAX_PLUS_ONE && LONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
- if (wrap_p)
- *wrap_p = d <= -1.0; /* NUM2ULONG(v) uses v.to_int conceptually. */
- if (0 <= d)
- return (unsigned long)d;
- return (unsigned long)(long)d;
- }
- else {
- FLOAT_OUT_OF_RANGE(val, "integer");
- }
- }
- else if (RB_TYPE_P(val, T_BIGNUM)) {
+ else if (RB_FLOAT_TYPE_P(val)) {
+ double d = RFLOAT_VALUE(val);
+ if (d < ULONG_MAX_PLUS_ONE && LONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
+ if (wrap_p)
+ *wrap_p = d <= -1.0; /* NUM2ULONG(v) uses v.to_int conceptually. */
+ if (0 <= d)
+ return (unsigned long)d;
+ return (unsigned long)(long)d;
+ }
+ else {
+ FLOAT_OUT_OF_RANGE(val, "integer");
+ }
+ }
+ else if (RB_BIGNUM_TYPE_P(val)) {
{
unsigned long ul = rb_big2ulong(val);
if (wrap_p)
@@ -2838,8 +3213,8 @@ rb_num2ulong(VALUE val)
void
rb_out_of_int(SIGNED_VALUE num)
{
- rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'",
- num, num < 0 ? "small" : "big");
+ rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to 'int'",
+ num, num < 0 ? "small" : "big");
}
#if SIZEOF_INT < SIZEOF_LONG
@@ -2847,7 +3222,7 @@ static void
check_int(long num)
{
if ((long)(int)num != num) {
- rb_out_of_int(num);
+ rb_out_of_int(num);
}
}
@@ -2855,14 +3230,14 @@ static void
check_uint(unsigned long num, int sign)
{
if (sign) {
- /* minus */
- if (num < (unsigned long)INT_MIN)
- rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned int'", (long)num);
+ /* minus */
+ if (num < (unsigned long)INT_MIN)
+ rb_raise(rb_eRangeError, "integer %ld too small to convert to 'unsigned int'", (long)num);
}
else {
- /* plus */
- if (UINT_MAX < num)
- rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned int'", num);
+ /* plus */
+ if (UINT_MAX < num)
+ rb_raise(rb_eRangeError, "integer %lu too big to convert to 'unsigned int'", num);
}
}
@@ -2900,11 +3275,11 @@ rb_fix2uint(VALUE val)
unsigned long num;
if (!FIXNUM_P(val)) {
- return rb_num2uint(val);
+ return rb_num2uint(val);
}
num = FIX2ULONG(val);
- check_uint(num, rb_num_negative_int_p(val));
+ check_uint(num, FIXNUM_NEGATIVE_P(val));
return num;
}
#else
@@ -2937,15 +3312,15 @@ NORETURN(static void rb_out_of_short(SIGNED_VALUE num));
static void
rb_out_of_short(SIGNED_VALUE num)
{
- rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `short'",
- num, num < 0 ? "small" : "big");
+ rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to 'short'",
+ num, num < 0 ? "small" : "big");
}
static void
check_short(long num)
{
if ((long)(short)num != num) {
- rb_out_of_short(num);
+ rb_out_of_short(num);
}
}
@@ -2953,14 +3328,14 @@ static void
check_ushort(unsigned long num, int sign)
{
if (sign) {
- /* minus */
- if (num < (unsigned long)SHRT_MIN)
- rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned short'", (long)num);
+ /* minus */
+ if (num < (unsigned long)SHRT_MIN)
+ rb_raise(rb_eRangeError, "integer %ld too small to convert to 'unsigned short'", (long)num);
}
else {
- /* plus */
- if (USHRT_MAX < num)
- rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned short'", num);
+ /* plus */
+ if (USHRT_MAX < num)
+ rb_raise(rb_eRangeError, "integer %lu too big to convert to 'unsigned short'", num);
}
}
@@ -2998,11 +3373,11 @@ rb_fix2ushort(VALUE val)
unsigned long num;
if (!FIXNUM_P(val)) {
- return rb_num2ushort(val);
+ return rb_num2ushort(val);
}
num = FIX2ULONG(val);
- check_ushort(num, rb_num_negative_int_p(val));
+ check_ushort(num, FIXNUM_NEGATIVE_P(val));
return num;
}
@@ -3015,7 +3390,7 @@ rb_num2fix(VALUE val)
v = rb_num2long(val);
if (!FIXABLE(v))
- rb_raise(rb_eRangeError, "integer %ld out of range of fixnum", v);
+ rb_raise(rb_eRangeError, "integer %ld out of range of fixnum", v);
return LONG2FIX(v);
}
@@ -3036,28 +3411,28 @@ LONG_LONG
rb_num2ll(VALUE val)
{
if (NIL_P(val)) {
- rb_raise(rb_eTypeError, "no implicit conversion from nil");
+ rb_raise(rb_eTypeError, "no implicit conversion from nil");
}
if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val);
- else if (RB_TYPE_P(val, T_FLOAT)) {
- double d = RFLOAT_VALUE(val);
- if (d < LLONG_MAX_PLUS_ONE && (LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d))) {
- return (LONG_LONG)d;
- }
- else {
- FLOAT_OUT_OF_RANGE(val, "long long");
- }
+ else if (RB_FLOAT_TYPE_P(val)) {
+ double d = RFLOAT_VALUE(val);
+ if (d < LLONG_MAX_PLUS_ONE && (LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d))) {
+ return (LONG_LONG)d;
+ }
+ else {
+ FLOAT_OUT_OF_RANGE(val, "long long");
+ }
}
- else if (RB_TYPE_P(val, T_BIGNUM)) {
- return rb_big2ll(val);
+ else if (RB_BIGNUM_TYPE_P(val)) {
+ return rb_big2ll(val);
}
else if (RB_TYPE_P(val, T_STRING)) {
- rb_raise(rb_eTypeError, "no implicit conversion from string");
+ rb_raise(rb_eTypeError, "no implicit conversion from string");
}
else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
- rb_raise(rb_eTypeError, "no implicit conversion from boolean");
+ rb_raise(rb_eTypeError, "no implicit conversion from boolean");
}
val = rb_to_int(val);
@@ -3067,35 +3442,30 @@ rb_num2ll(VALUE val)
unsigned LONG_LONG
rb_num2ull(VALUE val)
{
- if (RB_TYPE_P(val, T_NIL)) {
- rb_raise(rb_eTypeError, "no implicit conversion from nil");
- }
- else if (RB_TYPE_P(val, T_FIXNUM)) {
- return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, intended */
+ if (NIL_P(val)) {
+ rb_raise(rb_eTypeError, "no implicit conversion of nil into Integer");
}
- else if (RB_TYPE_P(val, T_FLOAT)) {
- double d = RFLOAT_VALUE(val);
- if (d < ULLONG_MAX_PLUS_ONE && LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
- if (0 <= d)
- return (unsigned LONG_LONG)d;
- return (unsigned LONG_LONG)(LONG_LONG)d;
- }
- else {
- FLOAT_OUT_OF_RANGE(val, "unsigned long long");
- }
+ else if (FIXNUM_P(val)) {
+ return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, intended */
}
- else if (RB_TYPE_P(val, T_BIGNUM)) {
- return rb_big2ull(val);
+ else if (RB_FLOAT_TYPE_P(val)) {
+ double d = RFLOAT_VALUE(val);
+ if (d < ULLONG_MAX_PLUS_ONE && LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
+ if (0 <= d)
+ return (unsigned LONG_LONG)d;
+ return (unsigned LONG_LONG)(LONG_LONG)d;
+ }
+ else {
+ FLOAT_OUT_OF_RANGE(val, "unsigned long long");
+ }
}
- else if (RB_TYPE_P(val, T_STRING)) {
- rb_raise(rb_eTypeError, "no implicit conversion from string");
+ else if (RB_BIGNUM_TYPE_P(val)) {
+ return rb_big2ull(val);
}
- else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
- rb_raise(rb_eTypeError, "no implicit conversion from boolean");
+ else {
+ val = rb_to_int(val);
+ return NUM2ULL(val);
}
-
- val = rb_to_int(val);
- return NUM2ULL(val);
}
#endif /* HAVE_LONG_LONG */
@@ -3104,8 +3474,96 @@ rb_num2ull(VALUE val)
*
* Document-class: Integer
*
- * Holds Integer values. You cannot add a singleton method to an
- * Integer object, any attempt to do so will raise a TypeError.
+ * An \Integer object represents an integer value.
+ *
+ * You can create an \Integer object explicitly with:
+ *
+ * - An {integer literal}[rdoc-ref:syntax/literals.rdoc@Integer+Literals].
+ *
+ * You can convert certain objects to Integers with:
+ *
+ * - \Method #Integer.
+ *
+ * An attempt to add a singleton method to an instance of this class
+ * causes an exception to be raised.
+ *
+ * == What's Here
+ *
+ * First, what's elsewhere. \Class \Integer:
+ *
+ * - Inherits from
+ * {class Numeric}[rdoc-ref:Numeric@What-27s+Here]
+ * and {class Object}[rdoc-ref:Object@What-27s+Here].
+ * - Includes {module Comparable}[rdoc-ref:Comparable@What-27s+Here].
+ *
+ * Here, class \Integer provides methods for:
+ *
+ * - {Querying}[rdoc-ref:Integer@Querying]
+ * - {Comparing}[rdoc-ref:Integer@Comparing]
+ * - {Converting}[rdoc-ref:Integer@Converting]
+ * - {Other}[rdoc-ref:Integer@Other]
+ *
+ * === Querying
+ *
+ * - #allbits?: Returns whether all bits in +self+ are set.
+ * - #anybits?: Returns whether any bits in +self+ are set.
+ * - #nobits?: Returns whether no bits in +self+ are set.
+ *
+ * === Comparing
+ *
+ * - #<: Returns whether +self+ is less than the given value.
+ * - #<=: Returns whether +self+ is less than or equal to the given value.
+ * - #<=>: Returns a number indicating whether +self+ is less than, equal
+ * to, or greater than the given value.
+ * - #== (aliased as #===): Returns whether +self+ is equal to the given
+ * value.
+ * - #>: Returns whether +self+ is greater than the given value.
+ * - #>=: Returns whether +self+ is greater than or equal to the given value.
+ *
+ * === Converting
+ *
+ * - ::sqrt: Returns the integer square root of the given value.
+ * - ::try_convert: Returns the given value converted to an \Integer.
+ * - #% (aliased as #modulo): Returns +self+ modulo the given value.
+ * - #&: Returns the bitwise AND of +self+ and the given value.
+ * - #*: Returns the product of +self+ and the given value.
+ * - #**: Returns the value of +self+ raised to the power of the given value.
+ * - #+: Returns the sum of +self+ and the given value.
+ * - #-: Returns the difference of +self+ and the given value.
+ * - #/: Returns the quotient of +self+ and the given value.
+ * - #<<: Returns the value of +self+ after a leftward bit-shift.
+ * - #>>: Returns the value of +self+ after a rightward bit-shift.
+ * - #[]: Returns a slice of bits from +self+.
+ * - #^: Returns the bitwise EXCLUSIVE OR of +self+ and the given value.
+ * - #ceil: Returns the smallest number greater than or equal to +self+.
+ * - #chr: Returns a 1-character string containing the character
+ * represented by the value of +self+.
+ * - #digits: Returns an array of integers representing the base-radix digits
+ * of +self+.
+ * - #div: Returns the integer result of dividing +self+ by the given value.
+ * - #divmod: Returns a 2-element array containing the quotient and remainder
+ * results of dividing +self+ by the given value.
+ * - #fdiv: Returns the Float result of dividing +self+ by the given value.
+ * - #floor: Returns the greatest number smaller than or equal to +self+.
+ * - #pow: Returns the modular exponentiation of +self+.
+ * - #pred: Returns the integer predecessor of +self+.
+ * - #remainder: Returns the remainder after dividing +self+ by the given value.
+ * - #round: Returns +self+ rounded to the nearest value with the given precision.
+ * - #succ (aliased as #next): Returns the integer successor of +self+.
+ * - #to_f: Returns +self+ converted to a Float.
+ * - #to_s (aliased as #inspect): Returns a string containing the place-value
+ * representation of +self+ in the given radix.
+ * - #truncate: Returns +self+ truncated to the given precision.
+ * - #|: Returns the bitwise OR of +self+ and the given value.
+ *
+ * === Other
+ *
+ * - #downto: Calls the given block with each integer value from +self+
+ * down to the given value.
+ * - #times: Calls the given block +self+ times with each integer
+ * in <tt>(0..self-1)</tt>.
+ * - #upto: Calls the given block with each integer value from +self+
+ * up to the given value.
*
*/
@@ -3113,14 +3571,11 @@ VALUE
rb_int_odd_p(VALUE num)
{
if (FIXNUM_P(num)) {
- if (num & 2) {
- return Qtrue;
- }
- return Qfalse;
+ return RBOOL(num & 2);
}
else {
- assert(RB_TYPE_P(num, T_BIGNUM));
- return rb_big_odd_p(num);
+ RUBY_ASSERT(RB_BIGNUM_TYPE_P(num));
+ return rb_big_odd_p(num);
}
}
@@ -3128,14 +3583,11 @@ static VALUE
int_even_p(VALUE num)
{
if (FIXNUM_P(num)) {
- if ((num & 2) == 0) {
- return Qtrue;
- }
- return Qfalse;
+ return RBOOL((num & 2) == 0);
}
else {
- assert(RB_TYPE_P(num, T_BIGNUM));
- return rb_big_even_p(num);
+ RUBY_ASSERT(RB_BIGNUM_TYPE_P(num));
+ return rb_big_even_p(num);
}
}
@@ -3147,9 +3599,25 @@ rb_int_even_p(VALUE num)
/*
* call-seq:
- * int.allbits?(mask) -> true or false
+ * allbits?(mask) -> true or false
+ *
+ * Returns +true+ if all bits that are set (=1) in +mask+
+ * are also set in +self+; returns +false+ otherwise.
+ *
+ * Example values:
+ *
+ * 0b1010101 self
+ * 0b1010100 mask
+ * 0b1010100 self & mask
+ * true self.allbits?(mask)
+ *
+ * 0b1010100 self
+ * 0b1010101 mask
+ * 0b1010100 self & mask
+ * false self.allbits?(mask)
+ *
+ * Related: Integer#anybits?, Integer#nobits?.
*
- * Returns +true+ if all bits of <code>+int+ & +mask+</code> are 1.
*/
static VALUE
@@ -3161,57 +3629,85 @@ int_allbits_p(VALUE num, VALUE mask)
/*
* call-seq:
- * int.anybits?(mask) -> true or false
+ * anybits?(mask) -> true or false
+ *
+ * Returns +true+ if any bit that is set (=1) in +mask+
+ * is also set in +self+; returns +false+ otherwise.
+ *
+ * Example values:
+ *
+ * 0b10000010 self
+ * 0b11111111 mask
+ * 0b10000010 self & mask
+ * true self.anybits?(mask)
+ *
+ * 0b00000000 self
+ * 0b11111111 mask
+ * 0b00000000 self & mask
+ * false self.anybits?(mask)
+ *
+ * Related: Integer#allbits?, Integer#nobits?.
*
- * Returns +true+ if any bits of <code>+int+ & +mask+</code> are 1.
*/
static VALUE
int_anybits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
- return int_zero_p(rb_int_and(num, mask)) ? Qfalse : Qtrue;
+ return RBOOL(!int_zero_p(rb_int_and(num, mask)));
}
/*
* call-seq:
- * int.nobits?(mask) -> true or false
+ * nobits?(mask) -> true or false
+ *
+ * Returns +true+ if no bit that is set (=1) in +mask+
+ * is also set in +self+; returns +false+ otherwise.
+ *
+ * Example values:
+ *
+ * 0b11110000 self
+ * 0b00001111 mask
+ * 0b00000000 self & mask
+ * true self.nobits?(mask)
+ *
+ * 0b00000001 self
+ * 0b11111111 mask
+ * 0b00000001 self & mask
+ * false self.nobits?(mask)
+ *
+ * Related: Integer#allbits?, Integer#anybits?.
*
- * Returns +true+ if no bits of <code>+int+ & +mask+</code> are 1.
*/
static VALUE
int_nobits_p(VALUE num, VALUE mask)
{
mask = rb_to_int(mask);
- return int_zero_p(rb_int_and(num, mask));
+ return RBOOL(int_zero_p(rb_int_and(num, mask)));
}
/*
- * Document-method: Integer#succ
- * Document-method: Integer#next
* call-seq:
- * int.next -> integer
- * int.succ -> integer
+ * succ -> next_integer
+ *
+ * Returns the successor integer of +self+ (equivalent to <tt>self + 1</tt>):
*
- * Returns the successor of +int+,
- * i.e. the Integer equal to <code>int+1</code>.
+ * 1.succ #=> 2
+ * -1.succ #=> 0
*
- * 1.next #=> 2
- * (-1).next #=> 0
- * 1.succ #=> 2
- * (-1).succ #=> 0
+ * Related: Integer#pred (predecessor value).
*/
VALUE
rb_int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
- long i = FIX2LONG(num) + 1;
- return LONG2NUM(i);
+ long i = FIX2LONG(num) + 1;
+ return LONG2NUM(i);
}
- if (RB_TYPE_P(num, T_BIGNUM)) {
- return rb_big_plus(num, INT2FIX(1));
+ if (RB_BIGNUM_TYPE_P(num)) {
+ return rb_big_plus(num, INT2FIX(1));
}
return num_funcall1(num, '+', INT2FIX(1));
}
@@ -3220,43 +3716,32 @@ rb_int_succ(VALUE num)
/*
* call-seq:
- * int.pred -> integer
+ * pred -> next_integer
*
- * Returns the predecessor of +int+,
- * i.e. the Integer equal to <code>int-1</code>.
+ * Returns the predecessor of +self+ (equivalent to <tt>self - 1</tt>):
+ *
+ * 1.pred #=> 0
+ * -1.pred #=> -2
+ *
+ * Related: Integer#succ (successor value).
*
- * 1.pred #=> 0
- * (-1).pred #=> -2
*/
static VALUE
rb_int_pred(VALUE num)
{
if (FIXNUM_P(num)) {
- long i = FIX2LONG(num) - 1;
- return LONG2NUM(i);
+ long i = FIX2LONG(num) - 1;
+ return LONG2NUM(i);
}
- if (RB_TYPE_P(num, T_BIGNUM)) {
- return rb_big_minus(num, INT2FIX(1));
+ if (RB_BIGNUM_TYPE_P(num)) {
+ return rb_big_minus(num, INT2FIX(1));
}
return num_funcall1(num, '-', INT2FIX(1));
}
#define int_pred rb_int_pred
-/*
- * Document-method: Integer#chr
- * call-seq:
- * int.chr([encoding]) -> string
- *
- * Returns a string containing the character represented by the +int+'s value
- * according to +encoding+.
- *
- * 65.chr #=> "A"
- * 230.chr #=> "\xE6"
- * 255.chr(Encoding::UTF_8) #=> "\u00FF"
- */
-
VALUE
rb_enc_uint_chr(unsigned int code, rb_encoding *enc)
{
@@ -3264,21 +3749,40 @@ rb_enc_uint_chr(unsigned int code, rb_encoding *enc)
VALUE str;
switch (n = rb_enc_codelen(code, enc)) {
case ONIGERR_INVALID_CODE_POINT_VALUE:
- rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
- break;
+ rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
+ break;
case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE:
case 0:
- rb_raise(rb_eRangeError, "%u out of char range", code);
- break;
+ rb_raise(rb_eRangeError, "%u out of char range", code);
+ break;
}
str = rb_enc_str_new(0, n, enc);
rb_enc_mbcput(code, RSTRING_PTR(str), enc);
if (rb_enc_precise_mbclen(RSTRING_PTR(str), RSTRING_END(str), enc) != n) {
- rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
+ rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
}
return str;
}
+/* call-seq:
+ * chr -> string
+ * chr(encoding) -> string
+ *
+ * Returns a 1-character string containing the character
+ * represented by the value of +self+, according to the given +encoding+.
+ *
+ * 65.chr # => "A"
+ * 0.chr # => "\x00"
+ * 255.chr # => "\xFF"
+ * string = 255.chr(Encoding::UTF_8)
+ * string.encoding # => Encoding::UTF_8
+ *
+ * Raises an exception if +self+ is negative.
+ *
+ * Related: Integer#ord.
+ *
+ */
+
static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
@@ -3289,30 +3793,30 @@ int_chr(int argc, VALUE *argv, VALUE num)
if (rb_num_to_uint(num, &i) == 0) {
}
else if (FIXNUM_P(num)) {
- rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
+ rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
}
else {
- rb_raise(rb_eRangeError, "bignum out of char range");
+ rb_raise(rb_eRangeError, "bignum out of char range");
}
switch (argc) {
case 0:
- if (0xff < i) {
- enc = rb_default_internal_encoding();
- if (!enc) {
- rb_raise(rb_eRangeError, "%u out of char range", i);
- }
- goto decode;
- }
- c = (char)i;
- if (i < 0x80) {
- return rb_usascii_str_new(&c, 1);
- }
- else {
- return rb_str_new(&c, 1);
- }
+ if (0xff < i) {
+ enc = rb_default_internal_encoding();
+ if (!enc) {
+ rb_raise(rb_eRangeError, "%u out of char range", i);
+ }
+ goto decode;
+ }
+ c = (char)i;
+ if (i < 0x80) {
+ return rb_usascii_str_new(&c, 1);
+ }
+ else {
+ return rb_str_new(&c, 1);
+ }
case 1:
- break;
+ break;
default:
rb_error_arity(argc, 0, 1);
}
@@ -3336,31 +3840,14 @@ VALUE
rb_int_uminus(VALUE num)
{
if (FIXNUM_P(num)) {
- return fix_uminus(num);
+ return fix_uminus(num);
}
else {
- assert(RB_TYPE_P(num, T_BIGNUM));
- return rb_big_uminus(num);
+ RUBY_ASSERT(RB_BIGNUM_TYPE_P(num));
+ return rb_big_uminus(num);
}
}
-/*
- * Document-method: Integer#to_s
- * call-seq:
- * int.to_s(base=10) -> string
- *
- * Returns a string containing the place-value representation of +int+
- * with radix +base+ (between 2 and 36).
- *
- * 12345.to_s #=> "12345"
- * 12345.to_s(2) #=> "11000000111001"
- * 12345.to_s(8) #=> "30071"
- * 12345.to_s(10) #=> "12345"
- * 12345.to_s(16) #=> "3039"
- * 12345.to_s(36) #=> "9ix"
- * 78546939656932.to_s(36) #=> "rubyrules"
- */
-
VALUE
rb_fix2str(VALUE x, int base)
{
@@ -3370,13 +3857,13 @@ rb_fix2str(VALUE x, int base)
int neg = 0;
if (base < 2 || 36 < base) {
- rb_raise(rb_eArgError, "invalid radix %d", base);
+ rb_raise(rb_eArgError, "invalid radix %d", base);
}
#if SIZEOF_LONG < SIZEOF_VOIDP
# if SIZEOF_VOIDP == SIZEOF_LONG_LONG
if ((val >= 0 && (x & 0xFFFFFFFF00000000ull)) ||
- (val < 0 && (x & 0xFFFFFFFF00000000ull) != 0xFFFFFFFF00000000ull)) {
- rb_bug("Unnormalized Fixnum value %p", (void *)x);
+ (val < 0 && (x & 0xFFFFFFFF00000000ull) != 0xFFFFFFFF00000000ull)) {
+ rb_bug("Unnormalized Fixnum value %p", (void *)x);
}
# else
/* should do something like above code, but currently ruby does not know */
@@ -3384,34 +3871,64 @@ rb_fix2str(VALUE x, int base)
# endif
#endif
if (val == 0) {
- return rb_usascii_str_new2("0");
+ return rb_usascii_str_new2("0");
}
if (val < 0) {
- u = 1 + (unsigned long)(-(val + 1)); /* u = -val avoiding overflow */
- neg = 1;
+ u = 1 + (unsigned long)(-(val + 1)); /* u = -val avoiding overflow */
+ neg = 1;
}
else {
- u = val;
+ u = val;
}
do {
- *--b = ruby_digitmap[(int)(u % base)];
+ *--b = ruby_digitmap[(int)(u % base)];
} while (u /= base);
if (neg) {
- *--b = '-';
+ *--b = '-';
}
return rb_usascii_str_new(b, e - b);
}
-static VALUE
-int_to_s(int argc, VALUE *argv, VALUE x)
+static VALUE rb_fix_to_s_static[10];
+
+VALUE
+rb_fix_to_s(VALUE x)
+{
+ long i = FIX2LONG(x);
+ if (i >= 0 && i < 10) {
+ return rb_fix_to_s_static[i];
+ }
+ return rb_fix2str(x, 10);
+}
+
+/*
+ * call-seq:
+ * to_s(base = 10) -> string
+ *
+ * Returns a string containing the place-value representation of +self+
+ * in radix +base+ (in 2..36).
+ *
+ * 12345.to_s # => "12345"
+ * 12345.to_s(2) # => "11000000111001"
+ * 12345.to_s(8) # => "30071"
+ * 12345.to_s(10) # => "12345"
+ * 12345.to_s(16) # => "3039"
+ * 12345.to_s(36) # => "9ix"
+ * 78546939656932.to_s(36) # => "rubyrules"
+ *
+ * Raises an exception if +base+ is out of range.
+ */
+
+VALUE
+rb_int_to_s(int argc, VALUE *argv, VALUE x)
{
int base;
if (rb_check_arity(argc, 0, 1))
- base = NUM2INT(argv[0]);
+ base = NUM2INT(argv[0]);
else
- base = 10;
+ base = 10;
return rb_int2str(x, base);
}
@@ -3419,41 +3936,32 @@ VALUE
rb_int2str(VALUE x, int base)
{
if (FIXNUM_P(x)) {
- return rb_fix2str(x, base);
+ return rb_fix2str(x, base);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big2str(x, base);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big2str(x, base);
}
return rb_any_to_s(x);
}
-/*
- * Document-method: Integer#+
- * call-seq:
- * int + numeric -> numeric_result
- *
- * Performs addition: the class of the resulting object depends on
- * the class of +numeric+.
- */
-
static VALUE
fix_plus(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- return rb_fix_plus_fix(x, y);
+ return rb_fix_plus_fix(x, y);
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- return rb_big_plus(y, x);
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ return rb_big_plus(y, x);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y));
+ else if (RB_FLOAT_TYPE_P(y)) {
+ return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y));
}
else if (RB_TYPE_P(y, T_COMPLEX)) {
- return rb_complex_plus(y, x);
+ return rb_complex_plus(y, x);
}
else {
- return rb_num_coerce_bin(x, y, '+');
+ return rb_num_coerce_bin(x, y, '+');
}
}
@@ -3463,53 +3971,74 @@ rb_fix_plus(VALUE x, VALUE y)
return fix_plus(x, y);
}
+/*
+ * call-seq:
+ * self + numeric -> numeric_result
+ *
+ * Performs addition:
+ *
+ * 2 + 2 # => 4
+ * -2 + 2 # => 0
+ * -2 + -2 # => -4
+ * 2 + 2.0 # => 4.0
+ * 2 + Rational(2, 1) # => (4/1)
+ * 2 + Complex(2, 0) # => (4+0i)
+ *
+ */
+
VALUE
rb_int_plus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_plus(x, y);
+ return fix_plus(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_plus(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_plus(x, y);
}
return rb_num_coerce_bin(x, y, '+');
}
-/*
- * Document-method: Integer#-
- * call-seq:
- * int - numeric -> numeric_result
- *
- * Performs subtraction: the class of the resulting object depends on
- * the class of +numeric+.
- */
-
static VALUE
fix_minus(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- return rb_fix_minus_fix(x, y);
+ return rb_fix_minus_fix(x, y);
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- x = rb_int2big(FIX2LONG(x));
- return rb_big_minus(x, y);
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ x = rb_int2big(FIX2LONG(x));
+ return rb_big_minus(x, y);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y));
+ else if (RB_FLOAT_TYPE_P(y)) {
+ return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y));
}
else {
- return rb_num_coerce_bin(x, y, '-');
+ return rb_num_coerce_bin(x, y, '-');
}
}
+/*
+ * call-seq:
+ * self - numeric -> numeric_result
+ *
+ * Performs subtraction:
+ *
+ * 4 - 2 # => 2
+ * -4 - 2 # => -6
+ * -4 - -2 # => -2
+ * 4 - 2.0 # => 2.0
+ * 4 - Rational(2, 1) # => (2/1)
+ * 4 - Complex(2, 0) # => (2+0i)
+ *
+ */
+
VALUE
rb_int_minus(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_minus(x, y);
+ return fix_minus(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_minus(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_minus(x, y);
}
return rb_num_coerce_bin(x, y, '-');
}
@@ -3519,47 +4048,52 @@ rb_int_minus(VALUE x, VALUE y)
/*tests if N*N would overflow*/
#define FIT_SQRT_LONG(n) (((n)<SQRT_LONG_MAX)&&((n)>=-SQRT_LONG_MAX))
-/*
- * Document-method: Integer#*
- * call-seq:
- * int * numeric -> numeric_result
- *
- * Performs multiplication: the class of the resulting object depends on
- * the class of +numeric+.
- */
-
static VALUE
fix_mul(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- return rb_fix_mul_fix(x, y);
+ return rb_fix_mul_fix(x, y);
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- switch (x) {
- case INT2FIX(0): return x;
- case INT2FIX(1): return y;
- }
- return rb_big_mul(y, x);
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ switch (x) {
+ case INT2FIX(0): return x;
+ case INT2FIX(1): return y;
+ }
+ return rb_big_mul(y, x);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y));
+ else if (RB_FLOAT_TYPE_P(y)) {
+ return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y));
}
else if (RB_TYPE_P(y, T_COMPLEX)) {
- return rb_complex_mul(y, x);
+ return rb_complex_mul(y, x);
}
else {
- return rb_num_coerce_bin(x, y, '*');
+ return rb_num_coerce_bin(x, y, '*');
}
}
+/*
+ * call-seq:
+ * self * numeric -> numeric_result
+ *
+ * Performs multiplication:
+ *
+ * 4 * 2 # => 8
+ * 4 * -2 # => -8
+ * -4 * 2 # => -8
+ * 4 * 2.0 # => 8.0
+ * 4 * Rational(1, 3) # => (4/3)
+ * 4 * Complex(2, 0) # => (8+0i)
+ */
+
VALUE
rb_int_mul(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_mul(x, y);
+ return fix_mul(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_mul(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_mul(x, y);
}
return rb_num_coerce_bin(x, y, '*');
}
@@ -3568,12 +4102,18 @@ static double
fix_fdiv_double(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- return double_div_double(FIX2LONG(x), FIX2LONG(y));
+ long iy = FIX2LONG(y);
+#if SIZEOF_LONG * CHAR_BIT > DBL_MANT_DIG
+ if ((iy < 0 ? -iy : iy) >= (1L << DBL_MANT_DIG)) {
+ return rb_big_fdiv_double(rb_int2big(FIX2LONG(x)), rb_int2big(iy));
+ }
+#endif
+ return double_div_double(FIX2LONG(x), iy);
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
+ else if (RB_BIGNUM_TYPE_P(y)) {
return rb_big_fdiv_double(rb_int2big(FIX2LONG(x)), y);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
+ else if (RB_FLOAT_TYPE_P(y)) {
return double_div_double(FIX2LONG(x), RFLOAT_VALUE(y));
}
else {
@@ -3585,16 +4125,16 @@ double
rb_int_fdiv_double(VALUE x, VALUE y)
{
if (RB_INTEGER_TYPE_P(y) && !FIXNUM_ZERO_P(y)) {
- VALUE gcd = rb_gcd(x, y);
- if (!FIXNUM_ZERO_P(gcd)) {
- x = rb_int_idiv(x, gcd);
- y = rb_int_idiv(y, gcd);
- }
+ VALUE gcd = rb_gcd(x, y);
+ if (!FIXNUM_ZERO_P(gcd) && gcd != INT2FIX(1)) {
+ x = rb_int_idiv(x, gcd);
+ y = rb_int_idiv(y, gcd);
+ }
}
if (FIXNUM_P(x)) {
return fix_fdiv_double(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
+ else if (RB_BIGNUM_TYPE_P(x)) {
return rb_big_fdiv_double(x, y);
}
else {
@@ -3603,15 +4143,19 @@ rb_int_fdiv_double(VALUE x, VALUE y)
}
/*
- * Document-method: Integer#fdiv
* call-seq:
- * int.fdiv(numeric) -> float
+ * fdiv(numeric) -> float
*
- * Returns the floating point result of dividing +int+ by +numeric+.
+ * Returns the Float result of dividing +self+ by +numeric+:
+ *
+ * 4.fdiv(2) # => 2.0
+ * 4.fdiv(-2) # => -2.0
+ * -4.fdiv(2) # => -2.0
+ * 4.fdiv(2.0) # => 2.0
+ * 4.fdiv(Rational(3, 4)) # => 5.333333333333333
+ *
+ * Raises an exception if +numeric+ cannot be converted to a Float.
*
- * 654321.fdiv(13731) #=> 47.652829364212366
- * 654321.fdiv(13731.24) #=> 47.65199646936475
- * -654321.fdiv(13731) #=> -47.652829364212366
*/
VALUE
@@ -3623,43 +4167,34 @@ rb_int_fdiv(VALUE x, VALUE y)
return Qnil;
}
-/*
- * Document-method: Integer#/
- * call-seq:
- * int / numeric -> numeric_result
- *
- * Performs division: the class of the resulting object depends on
- * the class of +numeric+.
- */
-
static VALUE
fix_divide(VALUE x, VALUE y, ID op)
{
if (FIXNUM_P(y)) {
- if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
- return rb_fix_div_fix(x, y);
+ if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
+ return rb_fix_div_fix(x, y);
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- x = rb_int2big(FIX2LONG(x));
- return rb_big_div(x, y);
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ x = rb_int2big(FIX2LONG(x));
+ return rb_big_div(x, y);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- if (op == '/') {
+ else if (RB_FLOAT_TYPE_P(y)) {
+ if (op == '/') {
double d = FIX2LONG(x);
return rb_flo_div_flo(DBL2NUM(d), y);
- }
- else {
+ }
+ else {
VALUE v;
- if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv();
+ if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv();
v = fix_divide(x, y, '/');
return flo_floor(0, 0, v);
- }
+ }
}
else {
- if (RB_TYPE_P(y, T_RATIONAL) &&
- op == '/' && FIX2LONG(x) == 1)
- return rb_rational_reciprocal(y);
- return rb_num_coerce_bin(x, y, op);
+ if (RB_TYPE_P(y, T_RATIONAL) &&
+ op == '/' && FIX2LONG(x) == 1)
+ return rb_rational_reciprocal(y);
+ return rb_num_coerce_bin(x, y, op);
}
}
@@ -3669,182 +4204,257 @@ fix_div(VALUE x, VALUE y)
return fix_divide(x, y, '/');
}
+/*
+ * call-seq:
+ * self / numeric -> numeric_result
+ *
+ * Performs division; for integer +numeric+, truncates the result to an integer:
+ *
+ * 4 / 3 # => 1
+ * 4 / -3 # => -2
+ * -4 / 3 # => -2
+ * -4 / -3 # => 1
+ *
+ * For other +numeric+, returns non-integer result:
+ *
+ * 4 / 3.0 # => 1.3333333333333333
+ * 4 / Rational(3, 1) # => (4/3)
+ * 4 / Complex(3, 0) # => ((4/3)+0i)
+ *
+ */
+
VALUE
rb_int_div(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_div(x, y);
+ return fix_div(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_div(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_div(x, y);
}
return Qnil;
}
-/*
- * Document-method: Integer#div
- * call-seq:
- * int.div(numeric) -> integer
- *
- * Performs integer division: returns the integer result of dividing +int+
- * by +numeric+.
- */
-
static VALUE
fix_idiv(VALUE x, VALUE y)
{
return fix_divide(x, y, id_div);
}
+/*
+ * call-seq:
+ * div(numeric) -> integer
+ *
+ * Performs integer division; returns the integer result of dividing +self+
+ * by +numeric+:
+ *
+ * 4.div(3) # => 1
+ * 4.div(-3) # => -2
+ * -4.div(3) # => -2
+ * -4.div(-3) # => 1
+ * 4.div(3.0) # => 1
+ * 4.div(Rational(3, 1)) # => 1
+ *
+ * Raises an exception if +numeric+ does not have method +div+.
+ *
+ */
+
VALUE
rb_int_idiv(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_idiv(x, y);
+ return fix_idiv(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_idiv(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_idiv(x, y);
}
return num_div(x, y);
}
-/*
- * Document-method: Integer#%
- * Document-method: Integer#modulo
- * call-seq:
- * int % other -> real
- * int.modulo(other) -> real
- *
- * Returns +int+ modulo +other+.
- *
- * See Numeric#divmod for more information.
- */
-
static VALUE
fix_mod(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
- return rb_fix_mod_fix(x, y);
+ if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
+ return rb_fix_mod_fix(x, y);
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- x = rb_int2big(FIX2LONG(x));
- return rb_big_modulo(x, y);
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ x = rb_int2big(FIX2LONG(x));
+ return rb_big_modulo(x, y);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y)));
+ else if (RB_FLOAT_TYPE_P(y)) {
+ return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y)));
}
else {
- return rb_num_coerce_bin(x, y, '%');
+ return rb_num_coerce_bin(x, y, '%');
}
}
+/*
+ * call-seq:
+ * self % other -> real_number
+ *
+ * Returns +self+ modulo +other+ as a real number.
+ *
+ * For integer +n+ and real number +r+, these expressions are equivalent:
+ *
+ * n % r
+ * n-r*(n/r).floor
+ * n.divmod(r)[1]
+ *
+ * See Numeric#divmod.
+ *
+ * Examples:
+ *
+ * 10 % 2 # => 0
+ * 10 % 3 # => 1
+ * 10 % 4 # => 2
+ *
+ * 10 % -2 # => 0
+ * 10 % -3 # => -2
+ * 10 % -4 # => -2
+ *
+ * 10 % 3.0 # => 1.0
+ * 10 % Rational(3, 1) # => (1/1)
+ *
+ */
VALUE
rb_int_modulo(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_mod(x, y);
+ return fix_mod(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_modulo(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_modulo(x, y);
}
return num_modulo(x, y);
}
/*
* call-seq:
- * int.remainder(numeric) -> real
+ * remainder(other) -> real_number
*
- * Returns the remainder after dividing +int+ by +numeric+.
+ * Returns the remainder after dividing +self+ by +other+.
*
- * <code>x.remainder(y)</code> means <code>x-y*(x/y).truncate</code>.
+ * Examples:
*
- * 5.remainder(3) #=> 2
- * -5.remainder(3) #=> -2
- * 5.remainder(-3) #=> 2
- * -5.remainder(-3) #=> -2
- * 5.remainder(1.5) #=> 0.5
+ * 11.remainder(4) # => 3
+ * 11.remainder(-4) # => 3
+ * -11.remainder(4) # => -3
+ * -11.remainder(-4) # => -3
+ *
+ * 12.remainder(4) # => 0
+ * 12.remainder(-4) # => 0
+ * -12.remainder(4) # => 0
+ * -12.remainder(-4) # => 0
+ *
+ * 13.remainder(4.0) # => 1.0
+ * 13.remainder(Rational(4, 1)) # => (1/1)
*
- * See Numeric#divmod.
*/
static VALUE
int_remainder(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return num_remainder(x, y);
+ if (FIXNUM_P(y)) {
+ VALUE z = fix_mod(x, y);
+ RUBY_ASSERT(FIXNUM_P(z));
+ if (z != INT2FIX(0) && (SIGNED_VALUE)(x ^ y) < 0)
+ z = fix_minus(z, y);
+ return z;
+ }
+ else if (!RB_BIGNUM_TYPE_P(y)) {
+ return num_remainder(x, y);
+ }
+ x = rb_int2big(FIX2LONG(x));
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_remainder(x, y);
+ else if (!RB_BIGNUM_TYPE_P(x)) {
+ return Qnil;
}
- return Qnil;
+ return rb_big_remainder(x, y);
}
-/*
- * Document-method: Integer#divmod
- * call-seq:
- * int.divmod(numeric) -> array
- *
- * See Numeric#divmod.
- */
static VALUE
fix_divmod(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- VALUE div, mod;
- if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
- rb_fix_divmod_fix(x, y, &div, &mod);
- return rb_assoc_new(div, mod);
- }
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- x = rb_int2big(FIX2LONG(x));
- return rb_big_divmod(x, y);
- }
- else if (RB_TYPE_P(y, T_FLOAT)) {
- {
- double div, mod;
- volatile VALUE a, b;
-
- flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod);
- a = dbl2ival(div);
- b = DBL2NUM(mod);
- return rb_assoc_new(a, b);
- }
+ VALUE div, mod;
+ if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
+ rb_fix_divmod_fix(x, y, &div, &mod);
+ return rb_assoc_new(div, mod);
+ }
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ x = rb_int2big(FIX2LONG(x));
+ return rb_big_divmod(x, y);
+ }
+ else if (RB_FLOAT_TYPE_P(y)) {
+ {
+ double div, mod;
+ volatile VALUE a, b;
+
+ flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod);
+ a = dbl2ival(div);
+ b = DBL2NUM(mod);
+ return rb_assoc_new(a, b);
+ }
}
else {
- return rb_num_coerce_bin(x, y, id_divmod);
+ return rb_num_coerce_bin(x, y, id_divmod);
}
}
+/*
+ * call-seq:
+ * divmod(other) -> array
+ *
+ * Returns a 2-element array <tt>[q, r]</tt>, where
+ *
+ * q = (self/other).floor # Quotient
+ * r = self % other # Remainder
+ *
+ * Examples:
+ *
+ * 11.divmod(4) # => [2, 3]
+ * 11.divmod(-4) # => [-3, -1]
+ * -11.divmod(4) # => [-3, 1]
+ * -11.divmod(-4) # => [2, -3]
+ *
+ * 12.divmod(4) # => [3, 0]
+ * 12.divmod(-4) # => [-3, 0]
+ * -12.divmod(4) # => [-3, 0]
+ * -12.divmod(-4) # => [3, 0]
+ *
+ * 13.divmod(4.0) # => [3, 1.0]
+ * 13.divmod(Rational(4, 1)) # => [3, (1/1)]
+ *
+ */
VALUE
rb_int_divmod(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_divmod(x, y);
+ return fix_divmod(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_divmod(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_divmod(x, y);
}
return Qnil;
}
/*
- * Document-method: Integer#**
* call-seq:
- * int ** numeric -> numeric_result
+ * self ** numeric -> numeric_result
*
- * Raises +int+ to the power of +numeric+, which may be negative or
- * fractional.
- * The result may be an Integer, a Float, a Rational, or a complex number.
+ * Raises +self+ to the power of +numeric+:
*
- * 2 ** 3 #=> 8
- * 2 ** -1 #=> (1/2)
- * 2 ** 0.5 #=> 1.4142135623730951
- * (-1) ** 0.5 #=> (0.0+1.0i)
+ * 2 ** 3 # => 8
+ * 2 ** -3 # => (1/8)
+ * -2 ** 3 # => -8
+ * -2 ** -3 # => (-1/8)
+ * 2 ** 3.3 # => 9.849155306759329
+ * 2 ** Rational(3, 1) # => (8/1)
+ * 2 ** Complex(3, 0) # => (8+0i)
*
- * 123456789 ** 2 #=> 15241578750190521
- * 123456789 ** 1.2 #=> 5126464716.0993185
- * 123456789 ** -2 #=> (1/15241578750190521)
*/
static VALUE
@@ -3857,24 +4467,24 @@ int_pow(long x, unsigned long y)
if (y == 1) return LONG2NUM(x);
if (neg) x = -x;
if (y & 1)
- z = x;
+ z = x;
else
- neg = 0;
+ neg = 0;
y &= ~1;
do {
- while (y % 2 == 0) {
- if (!FIT_SQRT_LONG(x)) {
+ while (y % 2 == 0) {
+ if (!FIT_SQRT_LONG(x)) {
goto bignum;
- }
- x = x * x;
- y >>= 1;
- }
- {
+ }
+ x = x * x;
+ y >>= 1;
+ }
+ {
if (MUL_OVERFLOW_FIXNUM_P(x, z)) {
- goto bignum;
- }
- z = x * z;
- }
+ goto bignum;
+ }
+ z = x * z;
+ }
} while (--y);
if (neg) z = -z;
return LONG2NUM(z);
@@ -3920,48 +4530,63 @@ fix_pow(VALUE x, VALUE y)
long a = FIX2LONG(x);
if (FIXNUM_P(y)) {
- long b = FIX2LONG(y);
+ long b = FIX2LONG(y);
- if (a == 1) return INT2FIX(1);
+ if (a == 1) return INT2FIX(1);
if (a == -1) return INT2FIX(b % 2 ? -1 : 1);
if (b < 0) return fix_pow_inverted(x, fix_uminus(y));
- if (b == 0) return INT2FIX(1);
- if (b == 1) return x;
- if (a == 0) return INT2FIX(0);
- return int_pow(a, b);
+ if (b == 0) return INT2FIX(1);
+ if (b == 1) return x;
+ if (a == 0) return INT2FIX(0);
+ return int_pow(a, b);
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- if (a == 1) return INT2FIX(1);
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ if (a == 1) return INT2FIX(1);
if (a == -1) return INT2FIX(int_even_p(y) ? 1 : -1);
if (BIGNUM_NEGATIVE_P(y)) return fix_pow_inverted(x, rb_big_uminus(y));
- if (a == 0) return INT2FIX(0);
- x = rb_int2big(FIX2LONG(x));
- return rb_big_pow(x, y);
- }
- else if (RB_TYPE_P(y, T_FLOAT)) {
- double dy = RFLOAT_VALUE(y);
- if (dy == 0.0) return DBL2NUM(1.0);
- if (a == 0) {
- return DBL2NUM(dy < 0 ? HUGE_VAL : 0.0);
- }
- if (a == 1) return DBL2NUM(1.0);
+ if (a == 0) return INT2FIX(0);
+ x = rb_int2big(FIX2LONG(x));
+ return rb_big_pow(x, y);
+ }
+ else if (RB_FLOAT_TYPE_P(y)) {
+ double dy = RFLOAT_VALUE(y);
+ if (dy == 0.0) return DBL2NUM(1.0);
+ if (a == 0) {
+ return DBL2NUM(dy < 0 ? HUGE_VAL : 0.0);
+ }
+ if (a == 1) return DBL2NUM(1.0);
if (a < 0 && dy != round(dy))
return rb_dbl_complex_new_polar_pi(pow(-(double)a, dy), dy);
return DBL2NUM(pow((double)a, dy));
}
else {
- return rb_num_coerce_bin(x, y, idPow);
+ return rb_num_coerce_bin(x, y, idPow);
}
}
+/*
+ * call-seq:
+ * self ** numeric -> numeric_result
+ *
+ * Raises +self+ to the power of +numeric+:
+ *
+ * 2 ** 3 # => 8
+ * 2 ** -3 # => (1/8)
+ * -2 ** 3 # => -8
+ * -2 ** -3 # => (-1/8)
+ * 2 ** 3.3 # => 9.849155306759329
+ * 2 ** Rational(3, 1) # => (8/1)
+ * 2 ** Complex(3, 0) # => (8+0i)
+ *
+ */
VALUE
rb_int_pow(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_pow(x, y);
+ return fix_pow(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_pow(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_pow(x, y);
}
return Qnil;
}
@@ -3984,250 +4609,290 @@ rb_num_pow(VALUE x, VALUE y)
return Qnil;
}
-/*
- * Document-method: Integer#==
- * Document-method: Integer#===
- * call-seq:
- * int == other -> true or false
- *
- * Returns +true+ if +int+ equals +other+ numerically.
- * Contrast this with Integer#eql?, which requires +other+ to be an Integer.
- *
- * 1 == 2 #=> false
- * 1 == 1.0 #=> true
- */
-
static VALUE
fix_equal(VALUE x, VALUE y)
{
if (x == y) return Qtrue;
if (FIXNUM_P(y)) return Qfalse;
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- return rb_big_eq(y, x);
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ return rb_big_eq(y, x);
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
+ else if (RB_FLOAT_TYPE_P(y)) {
return rb_integer_float_eq(x, y);
}
else {
- return num_equal(x, y);
+ return num_equal(x, y);
}
}
+/*
+ * call-seq:
+ * self == other -> true or false
+ *
+ * Returns +true+ if +self+ is numerically equal to +other+; +false+ otherwise.
+ *
+ * 1 == 2 #=> false
+ * 1 == 1.0 #=> true
+ *
+ * Related: Integer#eql? (requires +other+ to be an \Integer).
+ */
+
VALUE
rb_int_equal(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_equal(x, y);
+ return fix_equal(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_eq(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_eq(x, y);
}
return Qnil;
}
-/*
- * Document-method: Integer#<=>
- * call-seq:
- * int <=> numeric -> -1, 0, +1, or nil
- *
- * Comparison---Returns -1, 0, or +1 depending on whether +int+ is
- * less than, equal to, or greater than +numeric+.
- *
- * This is the basis for the tests in the Comparable module.
- *
- * +nil+ is returned if the two values are incomparable.
- */
-
static VALUE
fix_cmp(VALUE x, VALUE y)
{
if (x == y) return INT2FIX(0);
if (FIXNUM_P(y)) {
- if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
- return INT2FIX(-1);
- }
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- VALUE cmp = rb_big_cmp(y, x);
- switch (cmp) {
- case INT2FIX(+1): return INT2FIX(-1);
- case INT2FIX(-1): return INT2FIX(+1);
- }
- return cmp;
+ if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
+ return INT2FIX(-1);
+ }
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ VALUE cmp = rb_big_cmp(y, x);
+ switch (cmp) {
+ case INT2FIX(+1): return INT2FIX(-1);
+ case INT2FIX(-1): return INT2FIX(+1);
+ }
+ return cmp;
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- return rb_integer_float_cmp(x, y);
+ else if (RB_FLOAT_TYPE_P(y)) {
+ return rb_integer_float_cmp(x, y);
}
else {
- return rb_num_coerce_cmp(x, y, id_cmp);
+ return rb_num_coerce_cmp(x, y, id_cmp);
}
}
+/*
+ * call-seq:
+ * self <=> other -> -1, 0, +1, or nil
+ *
+ * Returns:
+ *
+ * - -1, if +self+ is less than +other+.
+ * - 0, if +self+ is equal to +other+.
+ * - 1, if +self+ is greater then +other+.
+ * - +nil+, if +self+ and +other+ are incomparable.
+ *
+ * Examples:
+ *
+ * 1 <=> 2 # => -1
+ * 1 <=> 1 # => 0
+ * 1 <=> 0 # => 1
+ * 1 <=> 'foo' # => nil
+ *
+ * 1 <=> 1.0 # => 0
+ * 1 <=> Rational(1, 1) # => 0
+ * 1 <=> Complex(1, 0) # => 0
+ *
+ * This method is the basis for comparisons in module Comparable.
+ *
+ */
+
VALUE
rb_int_cmp(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_cmp(x, y);
+ return fix_cmp(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_cmp(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_cmp(x, y);
}
else {
- rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x));
+ rb_raise(rb_eNotImpError, "need to define '<=>' in %s", rb_obj_classname(x));
}
}
-/*
- * Document-method: Integer#>
- * call-seq:
- * int > real -> true or false
- *
- * Returns +true+ if the value of +int+ is greater than that of +real+.
- */
-
static VALUE
fix_gt(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- if (FIX2LONG(x) > FIX2LONG(y)) return Qtrue;
- return Qfalse;
+ return RBOOL(FIX2LONG(x) > FIX2LONG(y));
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- return rb_big_cmp(y, x) == INT2FIX(-1) ? Qtrue : Qfalse;
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ return RBOOL(rb_big_cmp(y, x) == INT2FIX(-1));
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- return rb_integer_float_cmp(x, y) == INT2FIX(1) ? Qtrue : Qfalse;
+ else if (RB_FLOAT_TYPE_P(y)) {
+ return RBOOL(rb_integer_float_cmp(x, y) == INT2FIX(1));
}
else {
- return rb_num_coerce_relop(x, y, '>');
+ return rb_num_coerce_relop(x, y, '>');
}
}
+/*
+ * call-seq:
+ * self > other -> true or false
+ *
+ * Returns +true+ if the value of +self+ is greater than that of +other+:
+ *
+ * 1 > 0 # => true
+ * 1 > 1 # => false
+ * 1 > 2 # => false
+ * 1 > 0.5 # => true
+ * 1 > Rational(1, 2) # => true
+ *
+ * Raises an exception if the comparison cannot be made.
+ *
+ */
+
VALUE
rb_int_gt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_gt(x, y);
+ return fix_gt(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_gt(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_gt(x, y);
}
return Qnil;
}
-/*
- * Document-method: Integer#>=
- * call-seq:
- * int >= real -> true or false
- *
- * Returns +true+ if the value of +int+ is greater than or equal to that of
- * +real+.
- */
-
static VALUE
fix_ge(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- if (FIX2LONG(x) >= FIX2LONG(y)) return Qtrue;
- return Qfalse;
+ return RBOOL(FIX2LONG(x) >= FIX2LONG(y));
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- return rb_big_cmp(y, x) != INT2FIX(+1) ? Qtrue : Qfalse;
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ return RBOOL(rb_big_cmp(y, x) != INT2FIX(+1));
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- VALUE rel = rb_integer_float_cmp(x, y);
- return rel == INT2FIX(1) || rel == INT2FIX(0) ? Qtrue : Qfalse;
+ else if (RB_FLOAT_TYPE_P(y)) {
+ VALUE rel = rb_integer_float_cmp(x, y);
+ return RBOOL(rel == INT2FIX(1) || rel == INT2FIX(0));
}
else {
- return rb_num_coerce_relop(x, y, idGE);
+ return rb_num_coerce_relop(x, y, idGE);
}
}
+/*
+ * call-seq:
+ * self >= real -> true or false
+ *
+ * Returns +true+ if the value of +self+ is greater than or equal to
+ * that of +other+:
+ *
+ * 1 >= 0 # => true
+ * 1 >= 1 # => true
+ * 1 >= 2 # => false
+ * 1 >= 0.5 # => true
+ * 1 >= Rational(1, 2) # => true
+ *
+ * Raises an exception if the comparison cannot be made.
+ *
+ */
+
VALUE
rb_int_ge(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_ge(x, y);
+ return fix_ge(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_ge(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_ge(x, y);
}
return Qnil;
}
-/*
- * Document-method: Integer#<
- * call-seq:
- * int < real -> true or false
- *
- * Returns +true+ if the value of +int+ is less than that of +real+.
- */
-
static VALUE
fix_lt(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- if (FIX2LONG(x) < FIX2LONG(y)) return Qtrue;
- return Qfalse;
+ return RBOOL(FIX2LONG(x) < FIX2LONG(y));
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- return rb_big_cmp(y, x) == INT2FIX(+1) ? Qtrue : Qfalse;
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ return RBOOL(rb_big_cmp(y, x) == INT2FIX(+1));
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- return rb_integer_float_cmp(x, y) == INT2FIX(-1) ? Qtrue : Qfalse;
+ else if (RB_FLOAT_TYPE_P(y)) {
+ return RBOOL(rb_integer_float_cmp(x, y) == INT2FIX(-1));
}
else {
- return rb_num_coerce_relop(x, y, '<');
+ return rb_num_coerce_relop(x, y, '<');
}
}
+/*
+ * call-seq:
+ * self < other -> true or false
+ *
+ * Returns +true+ if the value of +self+ is less than that of +other+:
+ *
+ * 1 < 0 # => false
+ * 1 < 1 # => false
+ * 1 < 2 # => true
+ * 1 < 0.5 # => false
+ * 1 < Rational(1, 2) # => false
+ *
+ * Raises an exception if the comparison cannot be made.
+ *
+ */
+
static VALUE
int_lt(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_lt(x, y);
+ return fix_lt(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_lt(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_lt(x, y);
}
return Qnil;
}
-/*
- * Document-method: Integer#<=
- * call-seq:
- * int <= real -> true or false
- *
- * Returns +true+ if the value of +int+ is less than or equal to that of
- * +real+.
- */
-
static VALUE
fix_le(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- if (FIX2LONG(x) <= FIX2LONG(y)) return Qtrue;
- return Qfalse;
+ return RBOOL(FIX2LONG(x) <= FIX2LONG(y));
}
- else if (RB_TYPE_P(y, T_BIGNUM)) {
- return rb_big_cmp(y, x) != INT2FIX(-1) ? Qtrue : Qfalse;
+ else if (RB_BIGNUM_TYPE_P(y)) {
+ return RBOOL(rb_big_cmp(y, x) != INT2FIX(-1));
}
- else if (RB_TYPE_P(y, T_FLOAT)) {
- VALUE rel = rb_integer_float_cmp(x, y);
- return rel == INT2FIX(-1) || rel == INT2FIX(0) ? Qtrue : Qfalse;
+ else if (RB_FLOAT_TYPE_P(y)) {
+ VALUE rel = rb_integer_float_cmp(x, y);
+ return RBOOL(rel == INT2FIX(-1) || rel == INT2FIX(0));
}
else {
- return rb_num_coerce_relop(x, y, idLE);
+ return rb_num_coerce_relop(x, y, idLE);
}
}
+/*
+ * call-seq:
+ * self <= real -> true or false
+ *
+ * Returns +true+ if the value of +self+ is less than or equal to
+ * that of +other+:
+ *
+ * 1 <= 0 # => false
+ * 1 <= 1 # => true
+ * 1 <= 2 # => true
+ * 1 <= 0.5 # => false
+ * 1 <= Rational(1, 2) # => false
+ *
+ * Raises an exception if the comparison cannot be made.
+ *
+ */
+
static VALUE
int_le(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_le(x, y);
+ return fix_le(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_le(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_le(x, y);
}
return Qnil;
}
@@ -4242,10 +4907,10 @@ VALUE
rb_int_comp(VALUE num)
{
if (FIXNUM_P(num)) {
- return fix_comp(num);
+ return fix_comp(num);
}
- else if (RB_TYPE_P(num, T_BIGNUM)) {
- return rb_big_comp(num);
+ else if (RB_BIGNUM_TYPE_P(num)) {
+ return rb_big_comp(num);
}
return Qnil;
}
@@ -4256,7 +4921,7 @@ num_funcall_bit_1(VALUE y, VALUE arg, int recursive)
ID func = (ID)((VALUE *)arg)[0];
VALUE x = ((VALUE *)arg)[1];
if (recursive) {
- num_funcall_op_1_recursion(x, func, y);
+ num_funcall_op_1_recursion(x, func, y);
}
return rb_check_funcall(x, func, 1, &y);
}
@@ -4271,139 +4936,152 @@ rb_num_coerce_bit(VALUE x, VALUE y, ID func)
args[2] = y;
do_coerce(&args[1], &args[2], TRUE);
ret = rb_exec_recursive_paired(num_funcall_bit_1,
- args[2], args[1], (VALUE)args);
- if (ret == Qundef) {
- /* show the original object, not coerced object */
- coerce_failed(x, y);
+ args[2], args[1], (VALUE)args);
+ if (UNDEF_P(ret)) {
+ /* show the original object, not coerced object */
+ coerce_failed(x, y);
}
return ret;
}
-/*
- * Document-method: Integer#&
- * call-seq:
- * int & other_int -> integer
- *
- * Bitwise AND.
- */
-
static VALUE
fix_and(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- long val = FIX2LONG(x) & FIX2LONG(y);
- return LONG2NUM(val);
+ long val = FIX2LONG(x) & FIX2LONG(y);
+ return LONG2NUM(val);
}
- if (RB_TYPE_P(y, T_BIGNUM)) {
- return rb_big_and(y, x);
+ if (RB_BIGNUM_TYPE_P(y)) {
+ return rb_big_and(y, x);
}
return rb_num_coerce_bit(x, y, '&');
}
+/*
+ * call-seq:
+ * self & other -> integer
+ *
+ * Bitwise AND; each bit in the result is 1 if both corresponding bits
+ * in +self+ and +other+ are 1, 0 otherwise:
+ *
+ * "%04b" % (0b0101 & 0b0110) # => "0100"
+ *
+ * Raises an exception if +other+ is not an \Integer.
+ *
+ * Related: Integer#| (bitwise OR), Integer#^ (bitwise EXCLUSIVE OR).
+ *
+ */
+
VALUE
rb_int_and(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_and(x, y);
+ return fix_and(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_and(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_and(x, y);
}
return Qnil;
}
-/*
- * Document-method: Integer#|
- * call-seq:
- * int | other_int -> integer
- *
- * Bitwise OR.
- */
-
static VALUE
fix_or(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- long val = FIX2LONG(x) | FIX2LONG(y);
- return LONG2NUM(val);
+ long val = FIX2LONG(x) | FIX2LONG(y);
+ return LONG2NUM(val);
}
- if (RB_TYPE_P(y, T_BIGNUM)) {
- return rb_big_or(y, x);
+ if (RB_BIGNUM_TYPE_P(y)) {
+ return rb_big_or(y, x);
}
return rb_num_coerce_bit(x, y, '|');
}
+/*
+ * call-seq:
+ * self | other -> integer
+ *
+ * Bitwise OR; each bit in the result is 1 if either corresponding bit
+ * in +self+ or +other+ is 1, 0 otherwise:
+ *
+ * "%04b" % (0b0101 | 0b0110) # => "0111"
+ *
+ * Raises an exception if +other+ is not an \Integer.
+ *
+ * Related: Integer#& (bitwise AND), Integer#^ (bitwise EXCLUSIVE OR).
+ *
+ */
+
static VALUE
int_or(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_or(x, y);
+ return fix_or(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_or(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_or(x, y);
}
return Qnil;
}
-/*
- * Document-method: Integer#^
- * call-seq:
- * int ^ other_int -> integer
- *
- * Bitwise EXCLUSIVE OR.
- */
-
static VALUE
fix_xor(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
- long val = FIX2LONG(x) ^ FIX2LONG(y);
- return LONG2NUM(val);
+ long val = FIX2LONG(x) ^ FIX2LONG(y);
+ return LONG2NUM(val);
}
- if (RB_TYPE_P(y, T_BIGNUM)) {
- return rb_big_xor(y, x);
+ if (RB_BIGNUM_TYPE_P(y)) {
+ return rb_big_xor(y, x);
}
return rb_num_coerce_bit(x, y, '^');
}
+/*
+ * call-seq:
+ * self ^ other -> integer
+ *
+ * Bitwise EXCLUSIVE OR; each bit in the result is 1 if the corresponding bits
+ * in +self+ and +other+ are different, 0 otherwise:
+ *
+ * "%04b" % (0b0101 ^ 0b0110) # => "0011"
+ *
+ * Raises an exception if +other+ is not an \Integer.
+ *
+ * Related: Integer#& (bitwise AND), Integer#| (bitwise OR).
+ *
+ */
+
static VALUE
int_xor(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return fix_xor(x, y);
+ return fix_xor(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_xor(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_xor(x, y);
}
return Qnil;
}
-/*
- * Document-method: Integer#<<
- * call-seq:
- * int << count -> integer
- *
- * Returns +int+ shifted left +count+ positions, or right if +count+
- * is negative.
- */
-
static VALUE
rb_fix_lshift(VALUE x, VALUE y)
{
long val, width;
val = NUM2LONG(x);
+ if (!val) return (rb_to_int(y), INT2FIX(0));
if (!FIXNUM_P(y))
- return rb_big_lshift(rb_int2big(val), y);
+ return rb_big_lshift(rb_int2big(val), y);
width = FIX2LONG(y);
if (width < 0)
- return fix_rshift(val, (unsigned long)-width);
+ return fix_rshift(val, (unsigned long)-width);
return fix_lshift(val, width);
}
@@ -4411,46 +5089,55 @@ static VALUE
fix_lshift(long val, unsigned long width)
{
if (width > (SIZEOF_LONG*CHAR_BIT-1)
- || ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) {
- return rb_big_lshift(rb_int2big(val), ULONG2NUM(width));
+ || ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) {
+ return rb_big_lshift(rb_int2big(val), ULONG2NUM(width));
}
val = val << width;
return LONG2NUM(val);
}
+/*
+ * call-seq:
+ * self << count -> integer
+ *
+ * Returns +self+ with bits shifted +count+ positions to the left,
+ * or to the right if +count+ is negative:
+ *
+ * n = 0b11110000
+ * "%08b" % (n << 1) # => "111100000"
+ * "%08b" % (n << 3) # => "11110000000"
+ * "%08b" % (n << -1) # => "01111000"
+ * "%08b" % (n << -3) # => "00011110"
+ *
+ * Related: Integer#>>.
+ *
+ */
+
VALUE
rb_int_lshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return rb_fix_lshift(x, y);
+ return rb_fix_lshift(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_lshift(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_lshift(x, y);
}
return Qnil;
}
-/*
- * Document-method: Integer#>>
- * call-seq:
- * int >> count -> integer
- *
- * Returns +int+ shifted right +count+ positions, or left if +count+
- * is negative.
- */
-
static VALUE
rb_fix_rshift(VALUE x, VALUE y)
{
long i, val;
val = FIX2LONG(x);
+ if (!val) return (rb_to_int(y), INT2FIX(0));
if (!FIXNUM_P(y))
- return rb_big_rshift(rb_int2big(val), y);
+ return rb_big_rshift(rb_int2big(val), y);
i = FIX2LONG(y);
if (i == 0) return x;
if (i < 0)
- return fix_lshift(val, (unsigned long)-i);
+ return fix_lshift(val, (unsigned long)-i);
return fix_rshift(val, i);
}
@@ -4458,26 +5145,43 @@ static VALUE
fix_rshift(long val, unsigned long i)
{
if (i >= sizeof(long)*CHAR_BIT-1) {
- if (val < 0) return INT2FIX(-1);
- return INT2FIX(0);
+ if (val < 0) return INT2FIX(-1);
+ return INT2FIX(0);
}
val = RSHIFT(val, i);
return LONG2FIX(val);
}
-static VALUE
+/*
+ * call-seq:
+ * self >> count -> integer
+ *
+ * Returns +self+ with bits shifted +count+ positions to the right,
+ * or to the left if +count+ is negative:
+ *
+ * n = 0b11110000
+ * "%08b" % (n >> 1) # => "01111000"
+ * "%08b" % (n >> 3) # => "00011110"
+ * "%08b" % (n >> -1) # => "111100000"
+ * "%08b" % (n >> -3) # => "11110000000"
+ *
+ * Related: Integer#<<.
+ *
+ */
+
+VALUE
rb_int_rshift(VALUE x, VALUE y)
{
if (FIXNUM_P(x)) {
- return rb_fix_rshift(x, y);
+ return rb_fix_rshift(x, y);
}
- else if (RB_TYPE_P(x, T_BIGNUM)) {
- return rb_big_rshift(x, y);
+ else if (RB_BIGNUM_TYPE_P(x)) {
+ return rb_big_rshift(x, y);
}
return Qnil;
}
-MJIT_FUNC_EXPORTED VALUE
+VALUE
rb_fix_aref(VALUE fix, VALUE idx)
{
long val = FIX2LONG(fix);
@@ -4485,22 +5189,22 @@ rb_fix_aref(VALUE fix, VALUE idx)
idx = rb_to_int(idx);
if (!FIXNUM_P(idx)) {
- idx = rb_big_norm(idx);
- if (!FIXNUM_P(idx)) {
- if (!BIGNUM_SIGN(idx) || val >= 0)
- return INT2FIX(0);
- return INT2FIX(1);
- }
+ idx = rb_big_norm(idx);
+ if (!FIXNUM_P(idx)) {
+ if (!BIGNUM_SIGN(idx) || val >= 0)
+ return INT2FIX(0);
+ return INT2FIX(1);
+ }
}
i = FIX2LONG(idx);
if (i < 0) return INT2FIX(0);
if (SIZEOF_LONG*CHAR_BIT-1 <= i) {
- if (val < 0) return INT2FIX(1);
- return INT2FIX(0);
+ if (val < 0) return INT2FIX(1);
+ return INT2FIX(0);
}
if (val & (1L<<i))
- return INT2FIX(1);
+ return INT2FIX(1);
return INT2FIX(0);
}
@@ -4539,7 +5243,7 @@ int_aref1(VALUE num, VALUE arg)
if (!RTEST(num_negative_p(end))) {
if (!excl) end = rb_int_plus(end, INT2FIX(1));
VALUE mask = generate_mask(end);
- if (RTEST(int_zero_p(rb_int_and(num, mask)))) {
+ if (int_zero_p(rb_int_and(num, mask))) {
return INT2FIX(0);
}
else {
@@ -4572,7 +5276,7 @@ one_bit:
if (FIXNUM_P(num)) {
return rb_fix_aref(num, arg);
}
- else if (RB_TYPE_P(num, T_BIGNUM)) {
+ else if (RB_BIGNUM_TYPE_P(num)) {
return rb_big_aref(num, arg);
}
return Qnil;
@@ -4588,41 +5292,42 @@ int_aref2(VALUE num, VALUE beg, VALUE len)
}
/*
- * Document-method: Integer#[]
* call-seq:
- * int[n] -> 0, 1
- * int[n, m] -> num
- * int[range] -> num
+ * self[offset] -> 0 or 1
+ * self[offset, size] -> integer
+ * self[range] -> integer
*
- * Bit Reference---Returns the <code>n</code>th bit in the
- * binary representation of +int+, where <code>int[0]</code>
- * is the least significant bit.
+ * Returns a slice of bits from +self+.
*
- * a = 0b11001100101010
- * 30.downto(0) {|n| print a[n] }
- * #=> 0000000000000000011001100101010
+ * With argument +offset+, returns the bit at the given offset,
+ * where offset 0 refers to the least significant bit:
*
- * a = 9**15
- * 50.downto(0) {|n| print a[n] }
- * #=> 000101110110100000111000011110010100111100010111001
+ * n = 0b10 # => 2
+ * n[0] # => 0
+ * n[1] # => 1
+ * n[2] # => 0
+ * n[3] # => 0
*
* In principle, <code>n[i]</code> is equivalent to <code>(n >> i) & 1</code>.
- * Thus, any negative index always returns zero:
+ * Thus, negative index always returns zero:
+ *
+ * 255[-1] # => 0
+ *
+ * With arguments +offset+ and +size+, returns +size+ bits from +self+,
+ * beginning at +offset+ and including bits of greater significance:
*
- * p 255[-1] #=> 0
+ * n = 0b111000 # => 56
+ * "%010b" % n[0, 10] # => "0000111000"
+ * "%010b" % n[4, 10] # => "0000000011"
*
- * Range operations <code>n[i, len]</code> and <code>n[i..j]</code>
- * are naturally extended.
+ * With argument +range+, returns <tt>range.size</tt> bits from +self+,
+ * beginning at <tt>range.begin</tt> and including bits of greater significance:
*
- * * <code>n[i, len]</code> equals to <code>(n >> i) & ((1 << len) - 1)</code>.
- * * <code>n[i..j]</code> equals to <code>(n >> i) & ((1 << (j - i + 1)) - 1)</code>.
- * * <code>n[i...j]</code> equals to <code>(n >> i) & ((1 << (j - i)) - 1)</code>.
- * * <code>n[i..]</code> equals to <code>(n >> i)</code>.
- * * <code>n[..j]</code> is zero if <code>n & ((1 << (j + 1)) - 1)</code> is zero. Otherwise, raises an ArgumentError.
- * * <code>n[...j]</code> is zero if <code>n & ((1 << j) - 1)</code> is zero. Otherwise, raises an ArgumentError.
+ * n = 0b111000 # => 56
+ * "%010b" % n[0..9] # => "0000111000"
+ * "%010b" % n[4..9] # => "0000000011"
*
- * Note that range operation may exhaust memory.
- * For example, <code>-1[0, 1000000000000]</code> will raise NoMemoryError.
+ * Raises an exception if the slice cannot be constructed.
*/
static VALUE
@@ -4638,12 +5343,20 @@ int_aref(int const argc, VALUE * const argv, VALUE const num)
}
/*
- * Document-method: Integer#to_f
* call-seq:
- * int.to_f -> float
+ * to_f -> float
+ *
+ * Converts +self+ to a Float:
+ *
+ * 1.to_f # => 1.0
+ * -1.to_f # => -1.0
+ *
+ * If the value of +self+ does not fit in a Float,
+ * the result is infinity:
+ *
+ * (10**400).to_f # => Infinity
+ * (-10**400).to_f # => -Infinity
*
- * Converts +int+ to a Float. If +int+ doesn't fit in a Float,
- * the result is infinity.
*/
static VALUE
@@ -4652,34 +5365,18 @@ int_to_f(VALUE num)
double val;
if (FIXNUM_P(num)) {
- val = (double)FIX2LONG(num);
+ val = (double)FIX2LONG(num);
}
- else if (RB_TYPE_P(num, T_BIGNUM)) {
- val = rb_big2dbl(num);
+ else if (RB_BIGNUM_TYPE_P(num)) {
+ val = rb_big2dbl(num);
}
else {
- rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
+ rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
}
return DBL2NUM(val);
}
-/*
- * Document-method: Integer#abs
- * Document-method: Integer#magnitude
- * call-seq:
- * int.abs -> integer
- * int.magnitude -> integer
- *
- * Returns the absolute value of +int+.
- *
- * (-12345).abs #=> 12345
- * -12345.abs #=> 12345
- * 12345.abs #=> 12345
- *
- * Integer#magnitude is an alias for Integer#abs.
- */
-
static VALUE
fix_abs(VALUE fix)
{
@@ -4694,44 +5391,28 @@ VALUE
rb_int_abs(VALUE num)
{
if (FIXNUM_P(num)) {
- return fix_abs(num);
+ return fix_abs(num);
}
- else if (RB_TYPE_P(num, T_BIGNUM)) {
- return rb_big_abs(num);
+ else if (RB_BIGNUM_TYPE_P(num)) {
+ return rb_big_abs(num);
}
return Qnil;
}
-/*
- * Document-method: Integer#size
- * call-seq:
- * int.size -> int
- *
- * Returns the number of bytes in the machine representation of +int+
- * (machine dependent).
- *
- * 1.size #=> 8
- * -1.size #=> 8
- * 2147483647.size #=> 8
- * (256**10 - 1).size #=> 10
- * (256**20 - 1).size #=> 20
- * (256**40 - 1).size #=> 40
- */
-
static VALUE
fix_size(VALUE fix)
{
return INT2FIX(sizeof(long));
}
-static VALUE
-int_size(VALUE num)
+VALUE
+rb_int_size(VALUE num)
{
if (FIXNUM_P(num)) {
- return fix_size(num);
+ return fix_size(num);
}
- else if (RB_TYPE_P(num, T_BIGNUM)) {
- return rb_big_size_m(num);
+ else if (RB_BIGNUM_TYPE_P(num)) {
+ return rb_big_size_m(num);
}
return Qnil;
}
@@ -4749,41 +5430,21 @@ VALUE
rb_int_bit_length(VALUE num)
{
if (FIXNUM_P(num)) {
- return rb_fix_bit_length(num);
+ return rb_fix_bit_length(num);
}
- else if (RB_TYPE_P(num, T_BIGNUM)) {
- return rb_big_bit_length(num);
+ else if (RB_BIGNUM_TYPE_P(num)) {
+ return rb_big_bit_length(num);
}
return Qnil;
}
-/*
- * Document-method: Integer#digits
- * call-seq:
- * int.digits -> array
- * int.digits(base) -> array
- *
- * Returns the digits of +int+'s place-value representation
- * with radix +base+ (default: 10).
- * The digits are returned as an array with the least significant digit
- * as the first array element.
- *
- * +base+ must be greater than or equal to 2.
- *
- * 12345.digits #=> [5, 4, 3, 2, 1]
- * 12345.digits(7) #=> [4, 6, 6, 0, 5]
- * 12345.digits(100) #=> [45, 23, 1]
- *
- * -12345.digits(7) #=> Math::DomainError
- */
-
static VALUE
rb_fix_digits(VALUE fix, long base)
{
VALUE digits;
long x = FIX2LONG(fix);
- assert(x >= 0);
+ RUBY_ASSERT(x >= 0);
if (base < 2)
rb_raise(rb_eArgError, "invalid radix %ld", base);
@@ -4792,11 +5453,12 @@ rb_fix_digits(VALUE fix, long base)
return rb_ary_new_from_args(1, INT2FIX(0));
digits = rb_ary_new();
- while (x > 0) {
+ while (x >= base) {
long q = x % base;
rb_ary_push(digits, LONG2NUM(q));
x /= base;
}
+ rb_ary_push(digits, LONG2NUM(x));
return digits;
}
@@ -4804,16 +5466,16 @@ rb_fix_digits(VALUE fix, long base)
static VALUE
rb_int_digits_bigbase(VALUE num, VALUE base)
{
- VALUE digits;
+ VALUE digits, bases;
- assert(!rb_num_negative_p(num));
+ RUBY_ASSERT(!rb_num_negative_p(num));
- if (RB_TYPE_P(base, T_BIGNUM))
+ if (RB_BIGNUM_TYPE_P(base))
base = rb_big_norm(base);
if (FIXNUM_P(base) && FIX2LONG(base) < 2)
rb_raise(rb_eArgError, "invalid radix %ld", FIX2LONG(base));
- else if (RB_TYPE_P(base, T_BIGNUM) && BIGNUM_NEGATIVE_P(base))
+ else if (RB_BIGNUM_TYPE_P(base) && BIGNUM_NEGATIVE_P(base))
rb_raise(rb_eArgError, "negative radix");
if (FIXNUM_P(base) && FIXNUM_P(num))
@@ -4822,16 +5484,53 @@ rb_int_digits_bigbase(VALUE num, VALUE base)
if (FIXNUM_P(num))
return rb_ary_new_from_args(1, num);
- digits = rb_ary_new();
- while (!FIXNUM_P(num) || FIX2LONG(num) > 0) {
- VALUE qr = rb_int_divmod(num, base);
- rb_ary_push(digits, RARRAY_AREF(qr, 1));
- num = RARRAY_AREF(qr, 0);
+ if (int_lt(rb_int_div(rb_int_bit_length(num), rb_int_bit_length(base)), INT2FIX(50))) {
+ digits = rb_ary_new();
+ while (!FIXNUM_P(num) || FIX2LONG(num) > 0) {
+ VALUE qr = rb_int_divmod(num, base);
+ rb_ary_push(digits, RARRAY_AREF(qr, 1));
+ num = RARRAY_AREF(qr, 0);
+ }
+ return digits;
+ }
+
+ bases = rb_ary_new();
+ for (VALUE b = base; int_lt(b, num) == Qtrue; b = rb_int_mul(b, b)) {
+ rb_ary_push(bases, b);
+ }
+ digits = rb_ary_new_from_args(1, num);
+ while (RARRAY_LEN(bases)) {
+ VALUE b = rb_ary_pop(bases);
+ long i, last_idx = RARRAY_LEN(digits) - 1;
+ for(i = last_idx; i >= 0; i--) {
+ VALUE n = RARRAY_AREF(digits, i);
+ VALUE divmod = rb_int_divmod(n, b);
+ VALUE div = RARRAY_AREF(divmod, 0);
+ VALUE mod = RARRAY_AREF(divmod, 1);
+ if (i != last_idx || div != INT2FIX(0)) rb_ary_store(digits, 2 * i + 1, div);
+ rb_ary_store(digits, 2 * i, mod);
+ }
}
return digits;
}
+/*
+ * call-seq:
+ * digits(base = 10) -> array_of_integers
+ *
+ * Returns an array of integers representing the +base+-radix
+ * digits of +self+;
+ * the first element of the array represents the least significant digit:
+ *
+ * 12345.digits # => [5, 4, 3, 2, 1]
+ * 12345.digits(7) # => [4, 6, 6, 0, 5]
+ * 12345.digits(100) # => [45, 23, 1]
+ *
+ * Raises an exception if +self+ is negative or +base+ is less than 2.
+ *
+ */
+
static VALUE
rb_int_digits(int argc, VALUE *argv, VALUE num)
{
@@ -4846,7 +5545,7 @@ rb_int_digits(int argc, VALUE *argv, VALUE num)
if (!RB_INTEGER_TYPE_P(base_value))
rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
rb_obj_classname(argv[0]));
- if (RB_TYPE_P(base_value, T_BIGNUM))
+ if (RB_BIGNUM_TYPE_P(base_value))
return rb_int_digits_bigbase(num, base_value);
base = FIX2LONG(base_value);
@@ -4860,183 +5559,165 @@ rb_int_digits(int argc, VALUE *argv, VALUE num)
if (FIXNUM_P(num))
return rb_fix_digits(num, base);
- else if (RB_TYPE_P(num, T_BIGNUM))
+ else if (RB_BIGNUM_TYPE_P(num))
return rb_int_digits_bigbase(num, LONG2FIX(base));
return Qnil;
}
+static VALUE
+int_upto_size(VALUE from, VALUE args, VALUE eobj)
+{
+ return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(1), FALSE);
+}
+
/*
- * Document-method: Integer#upto
* call-seq:
- * int.upto(limit) {|i| block } -> self
- * int.upto(limit) -> an_enumerator
+ * upto(limit) {|i| ... } -> self
+ * upto(limit) -> enumerator
+ *
+ * Calls the given block with each integer value from +self+ up to +limit+;
+ * returns +self+:
*
- * Iterates the given block, passing in integer values from +int+ up to and
- * including +limit+.
+ * a = []
+ * 5.upto(10) {|i| a << i } # => 5
+ * a # => [5, 6, 7, 8, 9, 10]
+ * a = []
+ * -5.upto(0) {|i| a << i } # => -5
+ * a # => [-5, -4, -3, -2, -1, 0]
+ * 5.upto(4) {|i| fail 'Cannot happen' } # => 5
*
- * If no block is given, an Enumerator is returned instead.
+ * With no block given, returns an Enumerator.
*
- * 5.upto(10) {|i| print i, " " } #=> 5 6 7 8 9 10
*/
static VALUE
-int_upto_size(VALUE from, VALUE args, VALUE eobj)
-{
- return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(1), FALSE);
-}
-
-static VALUE
int_upto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
- long i, end;
+ long i, end;
- end = FIX2LONG(to);
- for (i = FIX2LONG(from); i <= end; i++) {
- rb_yield(LONG2FIX(i));
- }
+ end = FIX2LONG(to);
+ for (i = FIX2LONG(from); i <= end; i++) {
+ rb_yield(LONG2FIX(i));
+ }
}
else {
- VALUE i = from, c;
+ VALUE i = from, c;
- while (!(c = rb_funcall(i, '>', 1, to))) {
- rb_yield(i);
- i = rb_funcall(i, '+', 1, INT2FIX(1));
- }
- ensure_cmp(c, i, to);
+ while (!(c = rb_funcall(i, '>', 1, to))) {
+ rb_yield(i);
+ i = rb_funcall(i, '+', 1, INT2FIX(1));
+ }
+ ensure_cmp(c, i, to);
}
return from;
}
+static VALUE
+int_downto_size(VALUE from, VALUE args, VALUE eobj)
+{
+ return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(-1), FALSE);
+}
+
/*
- * Document-method: Integer#downto
* call-seq:
- * int.downto(limit) {|i| block } -> self
- * int.downto(limit) -> an_enumerator
+ * downto(limit) {|i| ... } -> self
+ * downto(limit) -> enumerator
+ *
+ * Calls the given block with each integer value from +self+ down to +limit+;
+ * returns +self+:
*
- * Iterates the given block, passing in decreasing values from +int+ down to
- * and including +limit+.
+ * a = []
+ * 10.downto(5) {|i| a << i } # => 10
+ * a # => [10, 9, 8, 7, 6, 5]
+ * a = []
+ * 0.downto(-5) {|i| a << i } # => 0
+ * a # => [0, -1, -2, -3, -4, -5]
+ * 4.downto(5) {|i| fail 'Cannot happen' } # => 4
*
- * If no block is given, an Enumerator is returned instead.
+ * With no block given, returns an Enumerator.
*
- * 5.downto(1) { |n| print n, ".. " }
- * puts "Liftoff!"
- * #=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
*/
static VALUE
-int_downto_size(VALUE from, VALUE args, VALUE eobj)
-{
- return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(-1), FALSE);
-}
-
-static VALUE
int_downto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
- long i, end;
+ long i, end;
- end = FIX2LONG(to);
- for (i=FIX2LONG(from); i >= end; i--) {
- rb_yield(LONG2FIX(i));
- }
+ end = FIX2LONG(to);
+ for (i=FIX2LONG(from); i >= end; i--) {
+ rb_yield(LONG2FIX(i));
+ }
}
else {
- VALUE i = from, c;
+ VALUE i = from, c;
- while (!(c = rb_funcall(i, '<', 1, to))) {
- rb_yield(i);
- i = rb_funcall(i, '-', 1, INT2FIX(1));
- }
- if (NIL_P(c)) rb_cmperr(i, to);
+ while (!(c = rb_funcall(i, '<', 1, to))) {
+ rb_yield(i);
+ i = rb_funcall(i, '-', 1, INT2FIX(1));
+ }
+ if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}
-/*
- * Document-method: Integer#times
- * call-seq:
- * int.times {|i| block } -> self
- * int.times -> an_enumerator
- *
- * Iterates the given block +int+ times, passing in values from zero to
- * <code>int - 1</code>.
- *
- * If no block is given, an Enumerator is returned instead.
- *
- * 5.times {|i| print i, " " } #=> 0 1 2 3 4
- */
-
static VALUE
int_dotimes_size(VALUE num, VALUE args, VALUE eobj)
{
- if (FIXNUM_P(num)) {
- if (NUM2LONG(num) <= 0) return INT2FIX(0);
- }
- else {
- if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) return INT2FIX(0);
- }
- return num;
-}
-
-static VALUE
-int_dotimes(VALUE num)
-{
- RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
-
- if (FIXNUM_P(num)) {
- long i, end;
-
- end = FIX2LONG(num);
- for (i=0; i<end; i++) {
- rb_yield_1(LONG2FIX(i));
- }
- }
- else {
- VALUE i = INT2FIX(0);
-
- for (;;) {
- if (!RTEST(rb_funcall(i, '<', 1, num))) break;
- rb_yield(i);
- i = rb_funcall(i, '+', 1, INT2FIX(1));
- }
- }
- return num;
+ return int_neg_p(num) ? INT2FIX(0) : num;
}
/*
- * Document-method: Integer#round
* call-seq:
- * int.round([ndigits] [, half: mode]) -> integer or float
+ * round(ndigits= 0, half: :up) -> integer
*
- * Returns +int+ rounded to the nearest value with
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns +self+ rounded to the nearest value with
+ * a precision of +ndigits+ decimal digits.
*
- * When the precision is negative, the returned value is an integer
- * with at least <code>ndigits.abs</code> trailing zeros.
+ * When +ndigits+ is negative, the returned value
+ * has at least <tt>ndigits.abs</tt> trailing zeros:
+ *
+ * 555.round(-1) # => 560
+ * 555.round(-2) # => 600
+ * 555.round(-3) # => 1000
+ * -555.round(-2) # => -600
+ * 555.round(-4) # => 0
*
* Returns +self+ when +ndigits+ is zero or positive.
*
- * 1.round #=> 1
- * 1.round(2) #=> 1
- * 15.round(-1) #=> 20
- * (-15).round(-1) #=> -20
- *
- * The optional +half+ keyword argument is available
- * similar to Float#round.
- *
- * 25.round(-1, half: :up) #=> 30
- * 25.round(-1, half: :down) #=> 20
- * 25.round(-1, half: :even) #=> 20
- * 35.round(-1, half: :up) #=> 40
- * 35.round(-1, half: :down) #=> 30
- * 35.round(-1, half: :even) #=> 40
- * (-25).round(-1, half: :up) #=> -30
- * (-25).round(-1, half: :down) #=> -20
- * (-25).round(-1, half: :even) #=> -20
+ * 555.round # => 555
+ * 555.round(1) # => 555
+ * 555.round(50) # => 555
+ *
+ * If keyword argument +half+ is given,
+ * and +self+ is equidistant from the two candidate values,
+ * the rounding is according to the given +half+ value:
+ *
+ * - +:up+ or +nil+: round away from zero:
+ *
+ * 25.round(-1, half: :up) # => 30
+ * (-25).round(-1, half: :up) # => -30
+ *
+ * - +:down+: round toward zero:
+ *
+ * 25.round(-1, half: :down) # => 20
+ * (-25).round(-1, half: :down) # => -20
+ *
+ *
+ * - +:even+: round toward the candidate whose last nonzero digit is even:
+ *
+ * 25.round(-1, half: :even) # => 20
+ * 15.round(-1, half: :even) # => 20
+ * (-25).round(-1, half: :even) # => -20
+ *
+ * Raises and exception if the value for +half+ is invalid.
+ *
+ * Related: Integer#truncate.
+ *
*/
static VALUE
@@ -5050,28 +5731,33 @@ int_round(int argc, VALUE* argv, VALUE num)
ndigits = NUM2INT(nd);
mode = rb_num_get_rounding_option(opt);
if (ndigits >= 0) {
- return num;
+ return num;
}
return rb_int_round(num, ndigits, mode);
}
/*
- * Document-method: Integer#floor
* call-seq:
- * int.floor([ndigits]) -> integer or float
+ * floor(ndigits = 0) -> integer
*
- * Returns the largest number less than or equal to +int+ with
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns the largest number less than or equal to +self+ with
+ * a precision of +ndigits+ decimal digits.
*
- * When the precision is negative, the returned value is an integer
- * with at least <code>ndigits.abs</code> trailing zeros.
+ * When +ndigits+ is negative, the returned value
+ * has at least <tt>ndigits.abs</tt> trailing zeros:
+ *
+ * 555.floor(-1) # => 550
+ * 555.floor(-2) # => 500
+ * -555.floor(-2) # => -600
+ * 555.floor(-3) # => 0
*
* Returns +self+ when +ndigits+ is zero or positive.
*
- * 1.floor #=> 1
- * 1.floor(2) #=> 1
- * 18.floor(-1) #=> 10
- * (-18).floor(-1) #=> -20
+ * 555.floor # => 555
+ * 555.floor(50) # => 555
+ *
+ * Related: Integer#ceil.
+ *
*/
static VALUE
@@ -5082,28 +5768,33 @@ int_floor(int argc, VALUE* argv, VALUE num)
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
- return num;
+ return num;
}
return rb_int_floor(num, ndigits);
}
/*
- * Document-method: Integer#ceil
* call-seq:
- * int.ceil([ndigits]) -> integer or float
+ * ceil(ndigits = 0) -> integer
*
- * Returns the smallest number greater than or equal to +int+ with
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns the smallest number greater than or equal to +self+ with
+ * a precision of +ndigits+ decimal digits.
*
* When the precision is negative, the returned value is an integer
- * with at least <code>ndigits.abs</code> trailing zeros.
+ * with at least <code>ndigits.abs</code> trailing zeros:
+ *
+ * 555.ceil(-1) # => 560
+ * 555.ceil(-2) # => 600
+ * -555.ceil(-2) # => -500
+ * 555.ceil(-3) # => 1000
*
* Returns +self+ when +ndigits+ is zero or positive.
*
- * 1.ceil #=> 1
- * 1.ceil(2) #=> 1
- * 18.ceil(-1) #=> 20
- * (-18).ceil(-1) #=> -10
+ * 555.ceil # => 555
+ * 555.ceil(50) # => 555
+ *
+ * Related: Integer#floor.
+ *
*/
static VALUE
@@ -5114,28 +5805,32 @@ int_ceil(int argc, VALUE* argv, VALUE num)
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
- return num;
+ return num;
}
return rb_int_ceil(num, ndigits);
}
/*
- * Document-method: Integer#truncate
* call-seq:
- * int.truncate([ndigits]) -> integer or float
+ * truncate(ndigits = 0) -> integer
*
- * Returns +int+ truncated (toward zero) to
- * a precision of +ndigits+ decimal digits (default: 0).
+ * Returns +self+ truncated (toward zero) to
+ * a precision of +ndigits+ decimal digits.
*
- * When the precision is negative, the returned value is an integer
- * with at least <code>ndigits.abs</code> trailing zeros.
+ * When +ndigits+ is negative, the returned value
+ * has at least <tt>ndigits.abs</tt> trailing zeros:
+ *
+ * 555.truncate(-1) # => 550
+ * 555.truncate(-2) # => 500
+ * -555.truncate(-2) # => -500
*
* Returns +self+ when +ndigits+ is zero or positive.
*
- * 1.truncate #=> 1
- * 1.truncate(2) #=> 1
- * 18.truncate(-1) #=> 10
- * (-18).truncate(-1) #=> -10
+ * 555.truncate # => 555
+ * 555.truncate(50) # => 555
+ *
+ * Related: Integer#round.
+ *
*/
static VALUE
@@ -5146,7 +5841,7 @@ int_truncate(int argc, VALUE* argv, VALUE num)
if (!rb_check_arity(argc, 0, 1)) return num;
ndigits = NUM2INT(argv[0]);
if (ndigits >= 0) {
- return num;
+ return num;
}
return rb_int_truncate(num, ndigits);
}
@@ -5156,12 +5851,12 @@ rettype \
prefix##_isqrt(argtype n) \
{ \
if (!argtype##_IN_DOUBLE_P(n)) { \
- unsigned int b = bit_length(n); \
- argtype t; \
- rettype x = (rettype)(n >> (b/2+1)); \
- x |= ((rettype)1LU << (b-1)/2); \
- while ((t = n/x) < (argtype)x) x = (rettype)((x + t) >> 1); \
- return x; \
+ unsigned int b = bit_length(n); \
+ argtype t; \
+ rettype x = (rettype)(n >> (b/2+1)); \
+ x |= ((rettype)1LU << (b-1)/2); \
+ while ((t = n/x) < (argtype)x) x = (rettype)((x + t) >> 1); \
+ return x; \
} \
return (rettype)sqrt(argtype##_TO_DOUBLE(n)); \
}
@@ -5193,29 +5888,35 @@ DEFINE_INT_SQRT(BDIGIT, rb_bdigit_dbl, BDIGIT_DBL)
rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg)
/*
- * Document-method: Integer::sqrt
* call-seq:
- * Integer.sqrt(n) -> integer
+ * Integer.sqrt(numeric) -> integer
*
* Returns the integer square root of the non-negative integer +n+,
- * i.e. the largest non-negative integer less than or equal to the
- * square root of +n+.
+ * which is the largest non-negative integer less than or equal to the
+ * square root of +numeric+.
+ *
+ * Integer.sqrt(0) # => 0
+ * Integer.sqrt(1) # => 1
+ * Integer.sqrt(24) # => 4
+ * Integer.sqrt(25) # => 5
+ * Integer.sqrt(10**400) # => 10**200
*
- * Integer.sqrt(0) #=> 0
- * Integer.sqrt(1) #=> 1
- * Integer.sqrt(24) #=> 4
- * Integer.sqrt(25) #=> 5
- * Integer.sqrt(10**400) #=> 10**200
+ * If +numeric+ is not an \Integer, it is converted to an \Integer:
*
- * Equivalent to <code>Math.sqrt(n).floor</code>, except that
- * the result of the latter code may differ from the true value
+ * Integer.sqrt(Complex(4, 0)) # => 2
+ * Integer.sqrt(Rational(4, 1)) # => 2
+ * Integer.sqrt(4.0) # => 2
+ * Integer.sqrt(3.14159) # => 1
+ *
+ * This method is equivalent to <tt>Math.sqrt(numeric).floor</tt>,
+ * except that the result of the latter code may differ from the true value
* due to the limited precision of floating point arithmetic.
*
- * Integer.sqrt(10**46) #=> 100000000000000000000000
- * Math.sqrt(10**46).floor #=> 99999999999999991611392 (!)
+ * Integer.sqrt(10**46) # => 100000000000000000000000
+ * Math.sqrt(10**46).floor # => 99999999999999991611392
+ *
+ * Raises an exception if +numeric+ is negative.
*
- * If +n+ is not an Integer, it is converted to an Integer first.
- * If +n+ is negative, a Math::DomainError is raised.
*/
static VALUE
@@ -5224,33 +5925,55 @@ rb_int_s_isqrt(VALUE self, VALUE num)
unsigned long n, sq;
num = rb_to_int(num);
if (FIXNUM_P(num)) {
- if (FIXNUM_NEGATIVE_P(num)) {
- domain_error("isqrt");
- }
- n = FIX2ULONG(num);
- sq = rb_ulong_isqrt(n);
- return LONG2FIX(sq);
+ if (FIXNUM_NEGATIVE_P(num)) {
+ domain_error("isqrt");
+ }
+ n = FIX2ULONG(num);
+ sq = rb_ulong_isqrt(n);
+ return LONG2FIX(sq);
}
else {
- size_t biglen;
- if (RBIGNUM_NEGATIVE_P(num)) {
- domain_error("isqrt");
- }
- biglen = BIGNUM_LEN(num);
- if (biglen == 0) return INT2FIX(0);
+ size_t biglen;
+ if (RBIGNUM_NEGATIVE_P(num)) {
+ domain_error("isqrt");
+ }
+ biglen = BIGNUM_LEN(num);
+ if (biglen == 0) return INT2FIX(0);
#if SIZEOF_BDIGIT <= SIZEOF_LONG
- /* short-circuit */
- if (biglen == 1) {
- n = BIGNUM_DIGITS(num)[0];
- sq = rb_ulong_isqrt(n);
- return ULONG2NUM(sq);
- }
+ /* short-circuit */
+ if (biglen == 1) {
+ n = BIGNUM_DIGITS(num)[0];
+ sq = rb_ulong_isqrt(n);
+ return ULONG2NUM(sq);
+ }
#endif
- return rb_big_isqrt(num);
+ return rb_big_isqrt(num);
}
}
/*
+ * call-seq:
+ * Integer.try_convert(object) -> object, integer, or nil
+ *
+ * If +object+ is an \Integer object, returns +object+.
+ * Integer.try_convert(1) # => 1
+ *
+ * Otherwise if +object+ responds to <tt>:to_int</tt>,
+ * calls <tt>object.to_int</tt> and returns the result.
+ * Integer.try_convert(1.25) # => 1
+ *
+ * Returns +nil+ if +object+ does not respond to <tt>:to_int</tt>
+ * Integer.try_convert([]) # => nil
+ *
+ * Raises an exception unless <tt>object.to_int</tt> returns an \Integer object.
+ */
+static VALUE
+int_s_try_convert(VALUE self, VALUE num)
+{
+ return rb_check_integer_type(num);
+}
+
+/*
* Document-class: ZeroDivisionError
*
* Raised when attempting to divide an integer by 0.
@@ -5276,9 +5999,9 @@ rb_int_s_isqrt(VALUE self, VALUE num)
/*
* Document-class: Numeric
*
- * Numeric is the class from which all higher-level numeric classes should inherit.
+ * \Numeric is the class from which all higher-level numeric classes should inherit.
*
- * Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as
+ * \Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as
* Integer are implemented as immediates, which means that each Integer is a single immutable
* object which is always passed by value.
*
@@ -5292,9 +6015,9 @@ rb_int_s_isqrt(VALUE self, VALUE num)
* 1.dup #=> 1
* 1.object_id == 1.dup.object_id #=> true
*
- * For this reason, Numeric should be used when defining other numeric classes.
+ * For this reason, \Numeric should be used when defining other numeric classes.
*
- * Classes which inherit from Numeric must implement +coerce+, which returns a two-member
+ * Classes which inherit from \Numeric must implement +coerce+, which returns a two-member
* Array containing an object that has been coerced into an instance of the new class
* and +self+ (see #coerce).
*
@@ -5344,6 +6067,88 @@ rb_int_s_isqrt(VALUE self, VALUE num)
* tally = Tally.new('||')
* puts tally * 2 #=> "||||"
* puts tally > 1 #=> true
+ *
+ * == What's Here
+ *
+ * First, what's elsewhere. \Class \Numeric:
+ *
+ * - Inherits from {class Object}[rdoc-ref:Object@What-27s+Here].
+ * - Includes {module Comparable}[rdoc-ref:Comparable@What-27s+Here].
+ *
+ * Here, class \Numeric provides methods for:
+ *
+ * - {Querying}[rdoc-ref:Numeric@Querying]
+ * - {Comparing}[rdoc-ref:Numeric@Comparing]
+ * - {Converting}[rdoc-ref:Numeric@Converting]
+ * - {Other}[rdoc-ref:Numeric@Other]
+ *
+ * === Querying
+ *
+ * - #finite?: Returns true unless +self+ is infinite or not a number.
+ * - #infinite?: Returns -1, +nil+ or +1, depending on whether +self+
+ * is <tt>-Infinity<tt>, finite, or <tt>+Infinity</tt>.
+ * - #integer?: Returns whether +self+ is an integer.
+ * - #negative?: Returns whether +self+ is negative.
+ * - #nonzero?: Returns whether +self+ is not zero.
+ * - #positive?: Returns whether +self+ is positive.
+ * - #real?: Returns whether +self+ is a real value.
+ * - #zero?: Returns whether +self+ is zero.
+ *
+ * === Comparing
+ *
+ * - #<=>: Returns:
+ *
+ * - -1 if +self+ is less than the given value.
+ * - 0 if +self+ is equal to the given value.
+ * - 1 if +self+ is greater than the given value.
+ * - +nil+ if +self+ and the given value are not comparable.
+ *
+ * - #eql?: Returns whether +self+ and the given value have the same value and type.
+ *
+ * === Converting
+ *
+ * - #% (aliased as #modulo): Returns the remainder of +self+ divided by the given value.
+ * - #-@: Returns the value of +self+, negated.
+ * - #abs (aliased as #magnitude): Returns the absolute value of +self+.
+ * - #abs2: Returns the square of +self+.
+ * - #angle (aliased as #arg and #phase): Returns 0 if +self+ is positive,
+ * Math::PI otherwise.
+ * - #ceil: Returns the smallest number greater than or equal to +self+,
+ * to a given precision.
+ * - #coerce: Returns array <tt>[coerced_self, coerced_other]</tt>
+ * for the given other value.
+ * - #conj (aliased as #conjugate): Returns the complex conjugate of +self+.
+ * - #denominator: Returns the denominator (always positive)
+ * of the Rational representation of +self+.
+ * - #div: Returns the value of +self+ divided by the given value
+ * and converted to an integer.
+ * - #divmod: Returns array <tt>[quotient, modulus]</tt> resulting
+ * from dividing +self+ the given divisor.
+ * - #fdiv: Returns the Float result of dividing +self+ by the given divisor.
+ * - #floor: Returns the largest number less than or equal to +self+,
+ * to a given precision.
+ * - #i: Returns the Complex object <tt>Complex(0, self)</tt>.
+ * the given value.
+ * - #imaginary (aliased as #imag): Returns the imaginary part of the +self+.
+ * - #numerator: Returns the numerator of the Rational representation of +self+;
+ * has the same sign as +self+.
+ * - #polar: Returns the array <tt>[self.abs, self.arg]</tt>.
+ * - #quo: Returns the value of +self+ divided by the given value.
+ * - #real: Returns the real part of +self+.
+ * - #rect (aliased as #rectangular): Returns the array <tt>[self, 0]</tt>.
+ * - #remainder: Returns <tt>self-arg*(self/arg).truncate</tt> for the given +arg+.
+ * - #round: Returns the value of +self+ rounded to the nearest value
+ * for the given a precision.
+ * - #to_c: Returns the Complex representation of +self+.
+ * - #to_int: Returns the Integer representation of +self+, truncating if necessary.
+ * - #truncate: Returns +self+ truncated (toward zero) to a given precision.
+ *
+ * === Other
+ *
+ * - #clone: Returns +self+; does not allow freezing.
+ * - #dup (aliased as #+@): Returns +self+.
+ * - #step: Invokes the given block with the sequence of specified numbers.
+ *
*/
void
Init_Numeric(void)
@@ -5396,15 +6201,15 @@ Init_Numeric(void)
rb_undef_alloc_func(rb_cInteger);
rb_undef_method(CLASS_OF(rb_cInteger), "new");
rb_define_singleton_method(rb_cInteger, "sqrt", rb_int_s_isqrt, 1);
+ rb_define_singleton_method(rb_cInteger, "try_convert", int_s_try_convert, 1);
- rb_define_method(rb_cInteger, "to_s", int_to_s, -1);
+ rb_define_method(rb_cInteger, "to_s", rb_int_to_s, -1);
rb_define_alias(rb_cInteger, "inspect", "to_s");
rb_define_method(rb_cInteger, "allbits?", int_allbits_p, 1);
rb_define_method(rb_cInteger, "anybits?", int_anybits_p, 1);
rb_define_method(rb_cInteger, "nobits?", int_nobits_p, 1);
rb_define_method(rb_cInteger, "upto", int_upto, 1);
rb_define_method(rb_cInteger, "downto", int_downto, 1);
- rb_define_method(rb_cInteger, "times", int_dotimes, 0);
rb_define_method(rb_cInteger, "succ", int_succ, 0);
rb_define_method(rb_cInteger, "next", int_succ, 0);
rb_define_method(rb_cInteger, "pred", int_pred, 0);
@@ -5445,12 +6250,27 @@ Init_Numeric(void)
rb_define_method(rb_cInteger, "<<", rb_int_lshift, 1);
rb_define_method(rb_cInteger, ">>", rb_int_rshift, 1);
- rb_define_method(rb_cInteger, "size", int_size, 0);
rb_define_method(rb_cInteger, "digits", rb_int_digits, -1);
- /* An obsolete class, use Integer */
- rb_define_const(rb_cObject, "Fixnum", rb_cInteger);
- rb_deprecate_constant(rb_cObject, "Fixnum");
+#define fix_to_s_static(n) do { \
+ VALUE lit = rb_fstring_literal(#n); \
+ rb_fix_to_s_static[n] = lit; \
+ rb_vm_register_global_object(lit); \
+ RB_GC_GUARD(lit); \
+ } while (0)
+
+ fix_to_s_static(0);
+ fix_to_s_static(1);
+ fix_to_s_static(2);
+ fix_to_s_static(3);
+ fix_to_s_static(4);
+ fix_to_s_static(5);
+ fix_to_s_static(6);
+ fix_to_s_static(7);
+ fix_to_s_static(8);
+ fix_to_s_static(9);
+
+#undef fix_to_s_static
rb_cFloat = rb_define_class("Float", rb_cNumeric);