summaryrefslogtreecommitdiff
path: root/benchmark/bm_app_lc_fizzbuzz.rb
diff options
context:
space:
mode:
Diffstat (limited to 'benchmark/bm_app_lc_fizzbuzz.rb')
-rw-r--r--benchmark/bm_app_lc_fizzbuzz.rb52
1 files changed, 0 insertions, 52 deletions
diff --git a/benchmark/bm_app_lc_fizzbuzz.rb b/benchmark/bm_app_lc_fizzbuzz.rb
deleted file mode 100644
index f09574b..0000000
--- a/benchmark/bm_app_lc_fizzbuzz.rb
+++ /dev/null
@@ -1,52 +0,0 @@
-#
-# FizzBuzz program using only lambda calculus
-#
-# This program is quoted from
-# "Understanding Computation" by Tom Stuart
-# http://computationbook.com/
-#
-# You can understand why this program works fine by reading this book.
-#
-
-solution = -> k { -> f { -> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> l { -> x { -> g { -> b { b }[-> p { p[-> x { -> y { x } }] }[l]][x][-> y { g[f[-> l { -> p { p[-> x { -> y { y } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][x][g]][-> l { -> p { p[-> x { -> y { x } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][y] }] } } } }][k][-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> l { -> x { -> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[l][f[x]] } }] } }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[m][n]][-> x { -> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[f[-> n { -> p { -> x { p[n[p][x]] } } }[m]][n]][m][x] }][-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]] } } }][-> p { -> x { p[x] } }][-> p { -> x { p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[x]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] } }]][-> n { -> b { b }[-> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> p { -> x { p[p[p[p[p[p[p[p[p[p[p[p[p[p[p[x]]]]]]]]]]]]]]] } }]]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]][-> b { b }[-> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> p { -> x { p[p[p[x]]] } }]]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]][-> b { b }[-> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]]][-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> n { -> p { -> x { p[n[p][x]] } } }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]]]][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> n { -> l { -> x { -> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> l { -> x { -> g { -> b { b }[-> p { p[-> x { -> y { x } }] }[l]][x][-> y { g[f[-> l { -> p { p[-> x { -> y { y } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][x][g]][-> l { -> p { p[-> x { -> y { x } }] }[-> p { p[-> x { -> y { y } }] }[l]] }[l]][y] }] } } } }][l][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }[-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][x]][-> l { -> x { -> x { -> y { -> f { f[x][y] } } }[-> x { -> y { y } }][-> x { -> y { -> f { f[x][y] } } }[x][l]] } }] } }[-> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }[-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]]][-> x { -> y { -> f { f[x][y] } } }[-> x { -> y { x } }][-> x { -> y { x } }]][-> x { f[-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { -> n { -> p { -> x { p[n[p][x]] } } }[f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n]][x] }][-> p { -> x { x } }] } } }][n][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]][x] }]][-> f { -> x { f[-> y { x[x][y] }] }[-> x { f[-> y { x[x][y] }] }] }[-> f { -> m { -> n { -> b { b }[-> m { -> n { -> n { n[-> x { -> x { -> y { y } } }][-> x { -> y { x } }] }[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]] } }[n][m]][-> x { f[-> m { -> n { n[-> n { -> p { p[-> x { -> y { x } }] }[n[-> p { -> x { -> y { -> f { f[x][y] } } }[-> p { p[-> x { -> y { y } }] }[p]][-> n { -> p { -> x { p[n[p][x]] } } }[-> p { p[-> x { -> y { y } }] }[p]]] }][-> x { -> y { -> f { f[x][y] } } }[-> p { -> x { x } }][-> p { -> x { x } }]]] }][m] } }[m][n]][n][x] }][m] } } }][n][-> m { -> n { n[-> m { -> n { n[-> n { -> p { -> x { p[n[p][x]] } } }][m] } }[m]][-> p { -> x { x } }] } }[-> p { -> x { p[p[x]] } }][-> p { -> x { p[p[p[p[p[x]]]]] } }]]] } }][n]]]] }]
-
-FIRST = -> l { LEFT[RIGHT[l]] }
-IF = -> b { b }
-LEFT = -> p { p[-> x { -> y { x } } ] }
-RIGHT = -> p { p[-> x { -> y { y } } ] }
-IS_EMPTY = LEFT
-REST = -> l { RIGHT[RIGHT[l]] }
-
-def to_integer(proc)
- proc[-> n { n + 1 }][0]
-end
-
-def to_boolean(proc)
- IF[proc][true][false]
-end
-
-def to_array(proc)
- array = []
-
- until to_boolean(IS_EMPTY[proc])
- array.push(FIRST[proc])
- proc = REST[proc]
- end
-
- array
-end
-
-def to_char(c)
- '0123456789BFiuz'.slice(to_integer(c))
-end
-
-def to_string(s)
- to_array(s).map { |c| to_char(c) }.join
-end
-
-answer = to_array(solution).map do |p|
- to_string(p)
-end
-
-answer_ary = answer.to_a
-# puts answer_ary