summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ChangeLog33
-rw-r--r--benchmark/bm_app_uri.rb8
-rw-r--r--benchmark/bm_loop_whileloop.rb4
-rw-r--r--benchmark/bm_loop_whileloop2.rb3
-rw-r--r--benchmark/bm_so_binary_trees.rb57
-rw-r--r--benchmark/bm_so_fannkuch.rb45
-rw-r--r--benchmark/bm_so_mandelbrot.rb57
-rw-r--r--benchmark/bm_so_meteor_contest.rb564
-rw-r--r--benchmark/bm_so_nbody.rb148
-rw-r--r--benchmark/bm_so_nsieve.rb35
-rw-r--r--benchmark/bm_so_nsieve_bits.rb42
-rw-r--r--benchmark/bm_so_partial_sums.rb31
-rw-r--r--benchmark/bm_so_pidigits.rb92
-rw-r--r--benchmark/bm_so_spectralnorm.rb50
-rw-r--r--benchmark/bm_vm1_ivar_set.rb6
-rw-r--r--benchmark/driver.rb2
16 files changed, 1173 insertions, 4 deletions
diff --git a/ChangeLog b/ChangeLog
index 07c76e8abb..48b64fe79e 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,36 @@
+Fri Sep 28 19:14:51 2007 Koichi Sasada <ko1@atdot.net>
+
+ * benchmark/driver.rb: fix notations.
+
+ * benchmark/bm_loop_whileloop.rb: ditto.
+
+ * benchmark/bm_loop_whileloop2.rb: ditto.
+
+ * benchmark/bm_app_uri.rb: added.
+
+ * benchmark/bm_vm1_ivar_set.rb: ditto.
+
+ * benchmark/bm_so_binary_trees.rb: added from Computer Language
+ Benchmarks Game (http://shootout.alioth.debian.org/).
+
+ * benchmark/bm_so_fannkuch.rb: ditto.
+
+ * benchmark/bm_so_mandelbrot.rb: ditto.
+
+ * benchmark/bm_so_meteor_contest.rb: ditto.
+
+ * benchmark/bm_so_nbody.rb: ditto.
+
+ * benchmark/bm_so_nsieve.rb: ditto.
+
+ * benchmark/bm_so_nsieve_bits.rb: ditto.
+
+ * benchmark/bm_so_partial_sums.rb: ditto.
+
+ * benchmark/bm_so_pidigits.rb: ditto.
+
+ * benchmark/bm_so_spectralnorm.rb: ditto.
+
Fri Sep 28 16:22:52 2007 Yukihiro Matsumoto <matz@ruby-lang.org>
* vm_core.h (rb_vm_struct): fix typo: bufferd -> buffered.
diff --git a/benchmark/bm_app_uri.rb b/benchmark/bm_app_uri.rb
new file mode 100644
index 0000000000..49fe5a81a8
--- /dev/null
+++ b/benchmark/bm_app_uri.rb
@@ -0,0 +1,8 @@
+require 'uri'
+
+100_000.times{
+ uri = URI.parse('http://www.ruby-lang.org')
+ uri.scheme
+ uri.host
+ uri.port
+}
diff --git a/benchmark/bm_loop_whileloop.rb b/benchmark/bm_loop_whileloop.rb
index 5500af6d09..43d35e1131 100644
--- a/benchmark/bm_loop_whileloop.rb
+++ b/benchmark/bm_loop_whileloop.rb
@@ -1,4 +1,4 @@
-i = 0
-while i<30000000 # benchmark loop 1
+i=0
+while i<30_000_000 # benchmark loop 1
i+=1
end
diff --git a/benchmark/bm_loop_whileloop2.rb b/benchmark/bm_loop_whileloop2.rb
index 56480f31ba..e514989661 100644
--- a/benchmark/bm_loop_whileloop2.rb
+++ b/benchmark/bm_loop_whileloop2.rb
@@ -1,5 +1,4 @@
i=0
-while i<6000000 # benchmark loop 2
+while i< 6_000_000 # benchmark loop 2
i+=1
end
-
diff --git a/benchmark/bm_so_binary_trees.rb b/benchmark/bm_so_binary_trees.rb
new file mode 100644
index 0000000000..138c5290f5
--- /dev/null
+++ b/benchmark/bm_so_binary_trees.rb
@@ -0,0 +1,57 @@
+# The Computer Language Shootout Benchmarks
+# http://shootout.alioth.debian.org
+#
+# contributed by Jesse Millikan
+
+# disable output
+def STDOUT.write_ *args
+end
+
+def item_check(tree)
+ if tree[0] == nil
+ tree[1]
+ else
+ tree[1] + item_check(tree[0]) - item_check(tree[2])
+ end
+end
+
+def bottom_up_tree(item, depth)
+ if depth > 0
+ item_item = 2 * item
+ depth -= 1
+ [bottom_up_tree(item_item - 1, depth), item, bottom_up_tree(item_item, depth)]
+ else
+ [nil, item, nil]
+ end
+end
+
+max_depth = 12 # 16 # ARGV[0].to_i
+min_depth = 4
+
+max_depth = min_depth + 2 if min_depth + 2 > max_depth
+
+stretch_depth = max_depth + 1
+stretch_tree = bottom_up_tree(0, stretch_depth)
+
+puts "stretch tree of depth #{stretch_depth}\t check: #{item_check(stretch_tree)}"
+stretch_tree = nil
+
+long_lived_tree = bottom_up_tree(0, max_depth)
+
+min_depth.step(max_depth + 1, 2) do |depth|
+ iterations = 2**(max_depth - depth + min_depth)
+
+ check = 0
+
+ for i in 1..iterations
+ temp_tree = bottom_up_tree(i, depth)
+ check += item_check(temp_tree)
+
+ temp_tree = bottom_up_tree(-i, depth)
+ check += item_check(temp_tree)
+ end
+
+ puts "#{iterations * 2}\t trees of depth #{depth}\t check: #{check}"
+end
+
+puts "long lived tree of depth #{max_depth}\t check: #{item_check(long_lived_tree)}"
diff --git a/benchmark/bm_so_fannkuch.rb b/benchmark/bm_so_fannkuch.rb
new file mode 100644
index 0000000000..23298a8a31
--- /dev/null
+++ b/benchmark/bm_so_fannkuch.rb
@@ -0,0 +1,45 @@
+# The Computer Language Shootout
+# http://shootout.alioth.debian.org/
+# Contributed by Sokolov Yura
+# Modified by Ryan Williams
+
+def fannkuch(n)
+ maxFlips, m, r, check = 0, n-1, n, 0
+ count = (1..n).to_a
+ perm = (1..n).to_a
+
+ while true
+ if check < 30
+ puts "#{perm}"
+ check += 1
+ end
+
+ while r != 1
+ count[r-1] = r
+ r -= 1
+ end
+
+ if perm[0] != 1 and perm[m] != n
+ perml = perm.clone #.dup
+ flips = 0
+ while (k = perml.first ) != 1
+ perml = perml.slice!(0, k).reverse + perml
+ flips += 1
+ end
+ maxFlips = flips if flips > maxFlips
+ end
+ while true
+ if r==n then return maxFlips end
+ perm.insert r,perm.shift
+ break if (count[r] -= 1) > 0
+ r += 1
+ end
+ end
+end
+
+def puts *args
+end
+
+N = 10 # (ARGV[0] || 1).to_i
+puts "Pfannkuchen(#{N}) = #{fannkuch(N)}"
+
diff --git a/benchmark/bm_so_mandelbrot.rb b/benchmark/bm_so_mandelbrot.rb
new file mode 100644
index 0000000000..2c05878863
--- /dev/null
+++ b/benchmark/bm_so_mandelbrot.rb
@@ -0,0 +1,57 @@
+# The Computer Language Benchmarks Game
+# http://shootout.alioth.debian.org/
+#
+# contributed by Karl von Laudermann
+# modified by Jeremy Echols
+
+size = 600 # ARGV[0].to_i
+
+puts "P4\n#{size} #{size}"
+
+ITER = 49 # Iterations - 1 for easy for..in looping
+LIMIT_SQUARED = 4.0 # Presquared limit
+
+byte_acc = 0
+bit_num = 0
+
+count_size = size - 1 # Precomputed size for easy for..in looping
+
+# For..in loops are faster than .upto, .downto, .times, etc.
+for y in 0..count_size
+ for x in 0..count_size
+ zr = 0.0
+ zi = 0.0
+ cr = (2.0*x/size)-1.5
+ ci = (2.0*y/size)-1.0
+ escape = false
+
+ # To make use of the for..in code, we use a dummy variable,
+ # like one would in C
+ for dummy in 0..ITER
+ tr = zr*zr - zi*zi + cr
+ ti = 2*zr*zi + ci
+ zr, zi = tr, ti
+
+ if (zr*zr+zi*zi) > LIMIT_SQUARED
+ escape = true
+ break
+ end
+ end
+
+ byte_acc = (byte_acc << 1) | (escape ? 0b0 : 0b1)
+ bit_num += 1
+
+ # Code is very similar for these cases, but using separate blocks
+ # ensures we skip the shifting when it's unnecessary, which is most cases.
+ if (bit_num == 8)
+ print byte_acc.chr
+ byte_acc = 0
+ bit_num = 0
+ elsif (x == count_size)
+ byte_acc <<= (8 - bit_num)
+ print byte_acc.chr
+ byte_acc = 0
+ bit_num = 0
+ end
+ end
+end
diff --git a/benchmark/bm_so_meteor_contest.rb b/benchmark/bm_so_meteor_contest.rb
new file mode 100644
index 0000000000..5dd720c340
--- /dev/null
+++ b/benchmark/bm_so_meteor_contest.rb
@@ -0,0 +1,564 @@
+#!/usr/bin/env ruby
+#
+# The Computer Language Shootout
+# http://shootout.alioth.debian.org
+# contributed by Kevin Barnes (Ruby novice)
+
+# PROGRAM: the main body is at the bottom.
+# 1) read about the problem here: http://www-128.ibm.com/developerworks/java/library/j-javaopt/
+# 2) see how I represent a board as a bitmask by reading the blank_board comments
+# 3) read as your mental paths take you
+
+def print *args
+end
+
+# class to represent all information about a particular rotation of a particular piece
+class Rotation
+ # an array (by location) containing a bit mask for how the piece maps at the given location.
+ # if the rotation is illegal at that location the mask will contain false
+ attr_reader :start_masks
+
+ # maps a direction to a relative location. these differ depending on whether it is an even or
+ # odd row being mapped from
+ @@rotation_even_adder = { :west => -1, :east => 1, :nw => -7, :ne => -6, :sw => 5, :se => 6 }
+ @@rotation_odd_adder = { :west => -1, :east => 1, :nw => -6, :ne => -5, :sw => 6, :se => 7 }
+
+ def initialize( directions )
+ @even_offsets, @odd_offsets = normalize_offsets( get_values( directions ))
+
+ @even_mask = mask_for_offsets( @even_offsets)
+ @odd_mask = mask_for_offsets( @odd_offsets)
+
+ @start_masks = Array.new(60)
+
+ # create the rotational masks by placing the base mask at the location and seeing if
+ # 1) it overlaps the boundries and 2) it produces a prunable board. if either of these
+ # is true the piece cannot be placed
+ 0.upto(59) do | offset |
+ mask = is_even(offset) ? (@even_mask << offset) : (@odd_mask << offset)
+ if (blank_board & mask == 0 && !prunable(blank_board | mask, 0, true)) then
+ imask = compute_required( mask, offset)
+ @start_masks[offset] = [ mask, imask, imask | mask ]
+ else
+ @start_masks[offset] = false
+ end
+ end
+ end
+
+ def compute_required( mask, offset )
+ board = blank_board
+ 0.upto(offset) { | i | board |= 1 << i }
+ board |= mask
+ return 0 if (!prunable(board | mask, offset))
+ board = flood_fill(board,58)
+ count = 0
+ imask = 0
+ 0.upto(59) do | i |
+ if (board[i] == 0) then
+ imask |= (1 << i)
+ count += 1
+ end
+ end
+ (count > 0 && count < 5) ? imask : 0
+ end
+
+ def flood_fill( board, location)
+ return board if (board[location] == 1)
+ board |= 1 << location
+ row, col = location.divmod(6)
+ board = flood_fill( board, location - 1) if (col > 0)
+ board = flood_fill( board, location + 1) if (col < 4)
+ if (row % 2 == 0) then
+ board = flood_fill( board, location - 7) if (col > 0 && row > 0)
+ board = flood_fill( board, location - 6) if (row > 0)
+ board = flood_fill( board, location + 6) if (row < 9)
+ board = flood_fill( board, location + 5) if (col > 0 && row < 9)
+ else
+ board = flood_fill( board, location - 5) if (col < 4 && row > 0)
+ board = flood_fill( board, location - 6) if (row > 0)
+ board = flood_fill( board, location + 6) if (row < 9)
+ board = flood_fill( board, location + 7) if (col < 4 && row < 9)
+ end
+ board
+ end
+
+ # given a location, produces a list of relative locations covered by the piece at this rotation
+ def offsets( location)
+ if is_even( location) then
+ @even_offsets.collect { | value | value + location }
+ else
+ @odd_offsets.collect { | value | value + location }
+ end
+ end
+
+ # returns a set of offsets relative to the top-left most piece of the rotation (by even or odd rows)
+ # this is hard to explain. imagine we have this partial board:
+ # 0 0 0 0 0 x [positions 0-5]
+ # 0 0 1 1 0 x [positions 6-11]
+ # 0 0 1 0 0 x [positions 12-17]
+ # 0 1 0 0 0 x [positions 18-23]
+ # 0 1 0 0 0 x [positions 24-29]
+ # 0 0 0 0 0 x [positions 30-35]
+ # ...
+ # The top-left of the piece is at position 8, the
+ # board would be passed as a set of positions (values array) containing [8,9,14,19,25] not necessarily in that
+ # sorted order. Since that array starts on an odd row, the offsets for an odd row are: [0,1,6,11,17] obtained
+ # by subtracting 8 from everything. Now imagine the piece shifted up and to the right so it's on an even row:
+ # 0 0 0 1 1 x [positions 0-5]
+ # 0 0 1 0 0 x [positions 6-11]
+ # 0 0 1 0 0 x [positions 12-17]
+ # 0 1 0 0 0 x [positions 18-23]
+ # 0 0 0 0 0 x [positions 24-29]
+ # 0 0 0 0 0 x [positions 30-35]
+ # ...
+ # Now the positions are [3,4,8,14,19] which after subtracting the lowest value (3) gives [0,1,5,11,16] thus, the
+ # offsets for this particular piece are (in even, odd order) [0,1,5,11,16],[0,1,6,11,17] which is what
+ # this function would return
+ def normalize_offsets( values)
+ min = values.min
+ even_min = is_even(min)
+ other_min = even_min ? min + 6 : min + 7
+ other_values = values.collect do | value |
+ if is_even(value) then
+ value + 6 - other_min
+ else
+ value + 7 - other_min
+ end
+ end
+ values.collect! { | value | value - min }
+
+ if even_min then
+ [values, other_values]
+ else
+ [other_values, values]
+ end
+ end
+
+ # produce a bitmask representation of an array of offset locations
+ def mask_for_offsets( offsets )
+ mask = 0
+ offsets.each { | value | mask = mask + ( 1 << value ) }
+ mask
+ end
+
+ # finds a "safe" position that a position as described by a list of directions can be placed
+ # without falling off any edge of the board. the values returned a location to place the first piece
+ # at so it will fit after making the described moves
+ def start_adjust( directions )
+ south = east = 0;
+ directions.each do | direction |
+ east += 1 if ( direction == :sw || direction == :nw || direction == :west )
+ south += 1 if ( direction == :nw || direction == :ne )
+ end
+ south * 6 + east
+ end
+
+ # given a set of directions places the piece (as defined by a set of directions) on the board at
+ # a location that will not take it off the edge
+ def get_values ( directions )
+ start = start_adjust(directions)
+ values = [ start ]
+ directions.each do | direction |
+ if (start % 12 >= 6) then
+ start += @@rotation_odd_adder[direction]
+ else
+ start += @@rotation_even_adder[direction]
+ end
+ values += [ start ]
+ end
+
+ # some moves take you back to an existing location, we'll strip duplicates
+ values.uniq
+ end
+end
+
+# describes a piece and caches information about its rotations to as to be efficient for iteration
+# ATTRIBUTES:
+# rotations -- all the rotations of the piece
+# type -- a numeic "name" of the piece
+# masks -- an array by location of all legal rotational masks (a n inner array) for that location
+# placed -- the mask that this piece was last placed at (not a location, but the actual mask used)
+class Piece
+ attr_reader :rotations, :type, :masks
+ attr_accessor :placed
+
+ # transform hashes that change one direction into another when you either flip or rotate a set of directions
+ @@flip_converter = { :west => :west, :east => :east, :nw => :sw, :ne => :se, :sw => :nw, :se => :ne }
+ @@rotate_converter = { :west => :nw, :east => :se, :nw => :ne, :ne => :east, :sw => :west, :se => :sw }
+
+ def initialize( directions, type )
+ @type = type
+ @rotations = Array.new();
+ @map = {}
+
+ generate_rotations( directions )
+ directions.collect! { | value | @@flip_converter[value] }
+ generate_rotations( directions )
+
+ # creates the masks AND a map that returns [location, rotation] for any given mask
+ # this is used when a board is found and we want to draw it, otherwise the map is unused
+ @masks = Array.new();
+ 0.upto(59) do | i |
+ even = true
+ @masks[i] = @rotations.collect do | rotation |
+ mask = rotation.start_masks[i]
+ @map[mask[0]] = [ i, rotation ] if (mask)
+ mask || nil
+ end
+ @masks[i].compact!
+ end
+ end
+
+ # rotates a set of directions through all six angles and adds a Rotation to the list for each one
+ def generate_rotations( directions )
+ 6.times do
+ rotations.push( Rotation.new(directions))
+ directions.collect! { | value | @@rotate_converter[value] }
+ end
+ end
+
+ # given a board string, adds this piece to the board at whatever location/rotation
+ # important: the outbound board string is 5 wide, the normal location notation is six wide (padded)
+ def fill_string( board_string)
+ location, rotation = @map[@placed]
+ rotation.offsets(location).each do | offset |
+ row, col = offset.divmod(6)
+ board_string[ row*5 + col, 1 ] = @type.to_s
+ end
+ end
+end
+
+# a blank bit board having this form:
+#
+# 0 0 0 0 0 1
+# 0 0 0 0 0 1
+# 0 0 0 0 0 1
+# 0 0 0 0 0 1
+# 0 0 0 0 0 1
+# 0 0 0 0 0 1
+# 0 0 0 0 0 1
+# 0 0 0 0 0 1
+# 0 0 0 0 0 1
+# 0 0 0 0 0 1
+# 1 1 1 1 1 1
+#
+# where left lest significant bit is the top left and the most significant is the lower right
+# the actual board only consists of the 0 places, the 1 places are blockers to keep things from running
+# off the edges or bottom
+def blank_board
+ 0b111111100000100000100000100000100000100000100000100000100000100000
+end
+
+def full_board
+ 0b111111111111111111111111111111111111111111111111111111111111111111
+end
+
+# determines if a location (bit position) is in an even row
+def is_even( location)
+ (location % 12) < 6
+end
+
+# support function that create three utility maps:
+# $converter -- for each row an array that maps a five bit row (via array mapping)
+# to the a a five bit representation of the bits below it
+# $bit_count -- maps a five bit row (via array mapping) to the number of 1s in the row
+# @@new_regions -- maps a five bit row (via array mapping) to an array of "region" arrays
+# a region array has three values the first is a mask of bits in the region,
+# the second is the count of those bits and the third is identical to the first
+# examples:
+# 0b10010 => [ 0b01100, 2, 0b01100 ], [ 0b00001, 1, 0b00001]
+# 0b01010 => [ 0b10000, 1, 0b10000 ], [ 0b00100, 1, 0b00100 ], [ 0b00001, 1, 0b00001]
+# 0b10001 => [ 0b01110, 3, 0b01110 ]
+def create_collector_support
+ odd_map = [0b11, 0b110, 0b1100, 0b11000, 0b10000]
+ even_map = [0b1, 0b11, 0b110, 0b1100, 0b11000]
+
+ all_odds = Array.new(0b100000)
+ all_evens = Array.new(0b100000)
+ bit_counts = Array.new(0b100000)
+ new_regions = Array.new(0b100000)
+ 0.upto(0b11111) do | i |
+ bit_count = odd = even = 0
+ 0.upto(4) do | bit |
+ if (i[bit] == 1) then
+ bit_count += 1
+ odd |= odd_map[bit]
+ even |= even_map[bit]
+ end
+ end
+ all_odds[i] = odd
+ all_evens[i] = even
+ bit_counts[i] = bit_count
+ new_regions[i] = create_regions( i)
+ end
+
+ $converter = []
+ 10.times { | row | $converter.push((row % 2 == 0) ? all_evens : all_odds) }
+ $bit_counts = bit_counts
+ $regions = new_regions.collect { | set | set.collect { | value | [ value, bit_counts[value], value] } }
+end
+
+# determines if a board is punable, meaning that there is no possibility that it
+# can be filled up with pieces. A board is prunable if there is a grouping of unfilled spaces
+# that are not a multiple of five. The following board is an example of a prunable board:
+# 0 0 1 0 0
+# 0 1 0 0 0
+# 1 1 0 0 0
+# 0 1 0 0 0
+# 0 0 0 0 0
+# ...
+#
+# This board is prunable because the top left corner is only 3 bits in area, no piece will ever fit it
+# parameters:
+# board -- an initial bit board (6 bit padded rows, see blank_board for format)
+# location -- starting location, everything above and to the left is already full
+# slotting -- set to true only when testing initial pieces, when filling normally
+# additional assumptions are possible
+#
+# Algorithm:
+# The algorithm starts at the top row (as determined by location) and iterates a row at a time
+# maintainng counts of active open areas (kept in the collector array) each collector contains
+# three values at the start of an iteration:
+# 0: mask of bits that would be adjacent to the collector in this row
+# 1: the number of bits collected so far
+# 2: a scratch space starting as zero, but used during the computation to represent
+# the empty bits in the new row that are adjacent (position 0)
+# The exact procedure is described in-code
+def prunable( board, location, slotting = false)
+ collectors = []
+ # loop accross the rows
+ (location / 6).to_i.upto(9) do | row_on |
+ # obtain a set of regions representing the bits of the curent row.
+ regions = $regions[(board >> (row_on * 6)) & 0b11111]
+ converter = $converter[row_on]
+
+ # track the number of collectors at the start of the cycle so that
+ # we don't compute against newly created collectors, only existing collectors
+ initial_collector_count = collectors.length
+
+ # loop against the regions. For each region of the row
+ # we will see if it connects to one or more existing collectors.
+ # if it connects to 1 collector, the bits from the region are added to the
+ # bits of the collector and the mask is placed in collector[2]
+ # If the region overlaps more than one collector then all the collectors
+ # it overlaps with are merged into the first one (the others are set to nil in the array)
+ # if NO collectors are found then the region is copied as a new collector
+ regions.each do | region |
+ collector_found = nil
+ region_mask = region[2]
+ initial_collector_count.times do | collector_num |
+ collector = collectors[collector_num]
+ if (collector) then
+ collector_mask = collector[0]
+ if (collector_mask & region_mask != 0) then
+ if (collector_found) then
+ collector_found[0] |= collector_mask
+ collector_found[1] += collector[1]
+ collector_found[2] |= collector[2]
+ collectors[collector_num] = nil
+ else
+ collector_found = collector
+ collector[1] += region[1]
+ collector[2] |= region_mask
+ end
+ end
+ end
+ end
+ if (collector_found == nil) then
+ collectors.push(Array.new(region))
+ end
+ end
+
+ # check the existing collectors, if any collector overlapped no bits in the region its [2] value will
+ # be zero. The size of any such reaason is tested if it is not a muliple of five true is returned since
+ # the board is prunable. if it is a multiple of five it is removed.
+ # Collector that are still active have a new adjacent value [0] set based n the matched bits
+ # and have [2] cleared out for the next cycle.
+ collectors.length.times do | collector_num |
+ collector = collectors[collector_num]
+ if (collector) then
+ if (collector[2] == 0) then
+ return true if (collector[1] % 5 != 0)
+ collectors[collector_num] = nil
+ else
+ # if a collector matches all bits in the row then we can return unprunable early for the
+ # follwing reasons:
+ # 1) there can be no more unavailable bits bince we fill from the top left downward
+ # 2) all previous regions have been closed or joined so only this region can fail
+ # 3) this region must be good since there can never be only 1 region that is nuot
+ # a multiple of five
+ # this rule only applies when filling normally, so we ignore the rule if we are "slotting"
+ # in pieces to see what configurations work for them (the only other time this algorithm is used).
+ return false if (collector[2] == 0b11111 && !slotting)
+ collector[0] = converter[collector[2]]
+ collector[2] = 0
+ end
+ end
+ end
+
+ # get rid of all the empty converters for the next round
+ collectors.compact!
+ end
+ return false if (collectors.length <= 1) # 1 collector or less and the region is fine
+ collectors.any? { | collector | (collector[1] % 5) != 0 } # more than 1 and we test them all for bad size
+end
+
+# creates a region given a row mask. see prunable for what a "region" is
+def create_regions( value )
+ regions = []
+ cur_region = 0
+ 5.times do | bit |
+ if (value[bit] == 0) then
+ cur_region |= 1 << bit
+ else
+ if (cur_region != 0 ) then
+ regions.push( cur_region)
+ cur_region = 0;
+ end
+ end
+ end
+ regions.push(cur_region) if (cur_region != 0)
+ regions
+end
+
+# find up to the counted number of solutions (or all solutions) and prints the final result
+def find_all
+ find_top( 1)
+ find_top( 0)
+ print_results
+end
+
+# show the board
+def print_results
+ print "#{@boards_found} solutions found\n\n"
+ print_full_board( @min_board)
+ print "\n"
+ print_full_board( @max_board)
+ print "\n"
+end
+
+# finds solutions. This special version of the main function is only used for the top level
+# the reason for it is basically to force a particular ordering on how the rotations are tested for
+# the first piece. It is called twice, first looking for placements of the odd rotations and then
+# looking for placements of the even locations.
+#
+# WHY?
+# Since any found solution has an inverse we want to maximize finding solutions that are not already found
+# as an inverse. The inverse will ALWAYS be 3 one of the piece configurations that is exactly 3 rotations away
+# (an odd number). Checking even vs odd then produces a higher probability of finding more pieces earlier
+# in the cycle. We still need to keep checking all the permutations, but our probability of finding one will
+# diminsh over time. Since we are TOLD how many to search for this lets us exit before checking all pieces
+# this bennifit is very great when seeking small numbers of solutions and is 0 when looking for more than the
+# maximum number
+def find_top( rotation_skip)
+ board = blank_board
+ (@pieces.length-1).times do
+ piece = @pieces.shift
+ piece.masks[0].each do | mask, imask, cmask |
+ if ((rotation_skip += 1) % 2 == 0) then
+ piece.placed = mask
+ find( 1, 1, board | mask)
+ end
+ end
+ @pieces.push(piece)
+ end
+ piece = @pieces.shift
+ @pieces.push(piece)
+end
+
+# the normail find routine, iterates through the available pieces, checks all rotations at the current location
+# and adds any boards found. depth is acheived via recursion. the overall approach is described
+# here: http://www-128.ibm.com/developerworks/java/library/j-javaopt/
+# parameters:
+# start_location -- where to start looking for place for the next piece at
+# placed -- number of pieces placed
+# board -- current state of the board
+#
+# see in-code comments
+def find( start_location, placed, board)
+ # find the next location to place a piece by looking for an empty bit
+ while board[start_location] == 1
+ start_location += 1
+ end
+
+ @pieces.length.times do
+ piece = @pieces.shift
+ piece.masks[start_location].each do | mask, imask, cmask |
+ if ( board & cmask == imask) then
+ piece.placed = mask
+ if (placed == 9) then
+ add_board
+ else
+ find( start_location + 1, placed + 1, board | mask)
+ end
+ end
+ end
+ @pieces.push(piece)
+ end
+end
+
+# print the board
+def print_full_board( board_string)
+ 10.times do | row |
+ print " " if (row % 2 == 1)
+ 5.times do | col |
+ print "#{board_string[row*5 + col,1]} "
+ end
+ print "\n"
+ end
+end
+
+# when a board is found we "draw it" into a string and then flip that string, adding both to
+# the list (hash) of solutions if they are unique.
+def add_board
+ board_string = "99999999999999999999999999999999999999999999999999"
+ @all_pieces.each { | piece | piece.fill_string( board_string ) }
+ save( board_string)
+ save( board_string.reverse)
+end
+
+# adds a board string to the list (if new) and updates the current best/worst board
+def save( board_string)
+ if (@all_boards[board_string] == nil) then
+ @min_board = board_string if (board_string < @min_board)
+ @max_board = board_string if (board_string > @max_board)
+ @all_boards.store(board_string,true)
+ @boards_found += 1
+
+ # the exit motif is a time saver. Ideally the function should return, but those tests
+ # take noticable time (performance).
+ if (@boards_found == @stop_count) then
+ print_results
+ exit(0)
+ end
+ end
+end
+
+
+##
+## MAIN BODY :)
+##
+create_collector_support
+@pieces = [
+ Piece.new( [ :nw, :ne, :east, :east ], 2),
+ Piece.new( [ :ne, :se, :east, :ne ], 7),
+ Piece.new( [ :ne, :east, :ne, :nw ], 1),
+ Piece.new( [ :east, :sw, :sw, :se ], 6),
+ Piece.new( [ :east, :ne, :se, :ne ], 5),
+ Piece.new( [ :east, :east, :east, :se ], 0),
+ Piece.new( [ :ne, :nw, :se, :east, :se ], 4),
+ Piece.new( [ :se, :se, :se, :west ], 9),
+ Piece.new( [ :se, :se, :east, :se ], 8),
+ Piece.new( [ :east, :east, :sw, :se ], 3)
+ ];
+
+@all_pieces = Array.new( @pieces)
+
+@min_board = "99999999999999999999999999999999999999999999999999"
+@max_board = "00000000000000000000000000000000000000000000000000"
+@stop_count = ARGV[0].to_i || 2089
+@all_boards = {}
+@boards_found = 0
+
+find_all ######## DO IT!!!
+
diff --git a/benchmark/bm_so_nbody.rb b/benchmark/bm_so_nbody.rb
new file mode 100644
index 0000000000..709d58b7ff
--- /dev/null
+++ b/benchmark/bm_so_nbody.rb
@@ -0,0 +1,148 @@
+# The Computer Language Shootout
+# http://shootout.alioth.debian.org
+#
+# Optimized for Ruby by Jesse Millikan
+# From version ported by Michael Neumann from the C gcc version,
+# which was written by Christoph Bauer.
+
+SOLAR_MASS = 4 * Math::PI**2
+DAYS_PER_YEAR = 365.24
+
+def _puts *args
+end
+
+class Planet
+ attr_accessor :x, :y, :z, :vx, :vy, :vz, :mass
+
+ def initialize(x, y, z, vx, vy, vz, mass)
+ @x, @y, @z = x, y, z
+ @vx, @vy, @vz = vx * DAYS_PER_YEAR, vy * DAYS_PER_YEAR, vz * DAYS_PER_YEAR
+ @mass = mass * SOLAR_MASS
+ end
+
+ def move_from_i(bodies, nbodies, dt, i)
+ while i < nbodies
+ b2 = bodies[i]
+ dx = @x - b2.x
+ dy = @y - b2.y
+ dz = @z - b2.z
+
+ distance = Math.sqrt(dx * dx + dy * dy + dz * dz)
+ mag = dt / (distance * distance * distance)
+ b_mass_mag, b2_mass_mag = @mass * mag, b2.mass * mag
+
+ @vx -= dx * b2_mass_mag
+ @vy -= dy * b2_mass_mag
+ @vz -= dz * b2_mass_mag
+ b2.vx += dx * b_mass_mag
+ b2.vy += dy * b_mass_mag
+ b2.vz += dz * b_mass_mag
+ i += 1
+ end
+
+ @x += dt * @vx
+ @y += dt * @vy
+ @z += dt * @vz
+ end
+end
+
+def energy(bodies)
+ e = 0.0
+ nbodies = bodies.size
+
+ for i in 0 ... nbodies
+ b = bodies[i]
+ e += 0.5 * b.mass * (b.vx * b.vx + b.vy * b.vy + b.vz * b.vz)
+ for j in (i + 1) ... nbodies
+ b2 = bodies[j]
+ dx = b.x - b2.x
+ dy = b.y - b2.y
+ dz = b.z - b2.z
+ distance = Math.sqrt(dx * dx + dy * dy + dz * dz)
+ e -= (b.mass * b2.mass) / distance
+ end
+ end
+ e
+end
+
+def offset_momentum(bodies)
+ px, py, pz = 0.0, 0.0, 0.0
+
+ for b in bodies
+ m = b.mass
+ px += b.vx * m
+ py += b.vy * m
+ pz += b.vz * m
+ end
+
+ b = bodies[0]
+ b.vx = - px / SOLAR_MASS
+ b.vy = - py / SOLAR_MASS
+ b.vz = - pz / SOLAR_MASS
+end
+
+BODIES = [
+ # sun
+ Planet.new(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0),
+
+ # jupiter
+ Planet.new(
+ 4.84143144246472090e+00,
+ -1.16032004402742839e+00,
+ -1.03622044471123109e-01,
+ 1.66007664274403694e-03,
+ 7.69901118419740425e-03,
+ -6.90460016972063023e-05,
+ 9.54791938424326609e-04),
+
+ # saturn
+ Planet.new(
+ 8.34336671824457987e+00,
+ 4.12479856412430479e+00,
+ -4.03523417114321381e-01,
+ -2.76742510726862411e-03,
+ 4.99852801234917238e-03,
+ 2.30417297573763929e-05,
+ 2.85885980666130812e-04),
+
+ # uranus
+ Planet.new(
+ 1.28943695621391310e+01,
+ -1.51111514016986312e+01,
+ -2.23307578892655734e-01,
+ 2.96460137564761618e-03,
+ 2.37847173959480950e-03,
+ -2.96589568540237556e-05,
+ 4.36624404335156298e-05),
+
+ # neptune
+ Planet.new(
+ 1.53796971148509165e+01,
+ -2.59193146099879641e+01,
+ 1.79258772950371181e-01,
+ 2.68067772490389322e-03,
+ 1.62824170038242295e-03,
+ -9.51592254519715870e-05,
+ 5.15138902046611451e-05)
+]
+
+init = 200_000 # ARGV[0]
+n = Integer(init)
+
+offset_momentum(BODIES)
+
+puts "%.9f" % energy(BODIES)
+
+nbodies = BODIES.size
+dt = 0.01
+
+n.times do
+ i = 0
+ while i < nbodies
+ b = BODIES[i]
+ b.move_from_i(BODIES, nbodies, dt, i + 1)
+ i += 1
+ end
+end
+
+puts "%.9f" % energy(BODIES)
diff --git a/benchmark/bm_so_nsieve.rb b/benchmark/bm_so_nsieve.rb
new file mode 100644
index 0000000000..59aead5893
--- /dev/null
+++ b/benchmark/bm_so_nsieve.rb
@@ -0,0 +1,35 @@
+# The Computer Language Shootout
+# http://shootout.alioth.debian.org/
+#
+# contributed by Glenn Parker, March 2005
+# modified by Evan Phoenix, Sept 2006
+
+def sieve(m)
+ flags = Flags.dup[0,m]
+ count = 0
+ pmax = m - 1
+ p = 2
+ while p <= pmax
+ unless flags[p].zero?
+ count += 1
+ mult = p
+ while mult <= pmax
+ flags[mult] = 0
+ mult += p
+ end
+ end
+ p += 1
+ end
+ count
+end
+
+n = 9 # (ARGV[0] || 2).to_i
+Flags = ("\x1" * ( 2 ** n * 10_000)).unpack("c*")
+
+n.downto(n-2) do |exponent|
+ break if exponent < 0
+ m = (1 << exponent) * 10_000
+ # m = (2 ** exponent) * 10_000
+ count = sieve(m)
+ printf "Primes up to %8d %8d\n", m, count
+end
diff --git a/benchmark/bm_so_nsieve_bits.rb b/benchmark/bm_so_nsieve_bits.rb
new file mode 100644
index 0000000000..693b2f246d
--- /dev/null
+++ b/benchmark/bm_so_nsieve_bits.rb
@@ -0,0 +1,42 @@
+#!/usr/bin/ruby
+#
+# The Great Computer Language Shootout
+# http://shootout.alioth.debian.org/
+#
+# nsieve-bits in Ruby
+# Contributed by Glenn Parker, March 2005
+
+CharExponent = 3
+BitsPerChar = 1 << CharExponent
+LowMask = BitsPerChar - 1
+
+def sieve(m)
+ items = "\xFF" * ((m / BitsPerChar) + 1)
+ masks = ""
+ BitsPerChar.times do |b|
+ masks << (1 << b).chr
+ end
+
+ count = 0
+ pmax = m - 1
+ 2.step(pmax, 1) do |p|
+ if items[p >> CharExponent][p & LowMask] == 1
+ count += 1
+ p.step(pmax, p) do |mult|
+ a = mult >> CharExponent
+ b = mult & LowMask
+ items[a] -= masks[b] if items[a][b] != 0
+ end
+ end
+ end
+ count
+end
+
+n = 9 # (ARGV[0] || 2).to_i
+n.step(n - 2, -1) do |exponent|
+ break if exponent < 0
+ m = 2 ** exponent * 10_000
+ count = sieve(m)
+ printf "Primes up to %8d %8d\n", m, count
+end
+
diff --git a/benchmark/bm_so_partial_sums.rb b/benchmark/bm_so_partial_sums.rb
new file mode 100644
index 0000000000..41f0a5fb87
--- /dev/null
+++ b/benchmark/bm_so_partial_sums.rb
@@ -0,0 +1,31 @@
+n = 2_500_000 # (ARGV.shift || 1).to_i
+
+alt = 1.0 ; s0 = s1 = s2 = s3 = s4 = s5 = s6 = s7 = s8 = 0.0
+
+1.upto(n) do |d|
+ d = d.to_f ; d2 = d * d ; d3 = d2 * d ; ds = Math.sin(d) ; dc = Math.cos(d)
+
+ s0 += (2.0 / 3.0) ** (d - 1.0)
+ s1 += 1.0 / Math.sqrt(d)
+ s2 += 1.0 / (d * (d + 1.0))
+ s3 += 1.0 / (d3 * ds * ds)
+ s4 += 1.0 / (d3 * dc * dc)
+ s5 += 1.0 / d
+ s6 += 1.0 / d2
+ s7 += alt / d
+ s8 += alt / (2.0 * d - 1.0)
+
+ alt = -alt
+end
+
+if false
+ printf("%.9f\t(2/3)^k\n", s0)
+ printf("%.9f\tk^-0.5\n", s1)
+ printf("%.9f\t1/k(k+1)\n", s2)
+ printf("%.9f\tFlint Hills\n", s3)
+ printf("%.9f\tCookson Hills\n", s4)
+ printf("%.9f\tHarmonic\n", s5)
+ printf("%.9f\tRiemann Zeta\n", s6)
+ printf("%.9f\tAlternating Harmonic\n", s7)
+ printf("%.9f\tGregory\n", s8)
+end
diff --git a/benchmark/bm_so_pidigits.rb b/benchmark/bm_so_pidigits.rb
new file mode 100644
index 0000000000..acffe71ae7
--- /dev/null
+++ b/benchmark/bm_so_pidigits.rb
@@ -0,0 +1,92 @@
+# The Great Computer Language Shootout
+# http://shootout.alioth.debian.org/
+#
+# contributed by Gabriele Renzi
+
+class PiDigitSpigot
+
+ def initialize()
+ @z = Transformation.new 1,0,0,1
+ @x = Transformation.new 0,0,0,0
+ @inverse = Transformation.new 0,0,0,0
+ end
+
+ def next!
+ @y = @z.extract(3)
+ if safe? @y
+ @z = produce(@y)
+ @y
+ else
+ @z = consume @x.next!()
+ next!()
+ end
+ end
+
+ def safe?(digit)
+ digit == @z.extract(4)
+ end
+
+ def produce(i)
+ @inverse.qrst(10,-10*i,0,1).compose(@z)
+ end
+
+ def consume(a)
+ @z.compose(a)
+ end
+end
+
+
+class Transformation
+ attr_reader :q, :r, :s, :t
+ def initialize (q, r, s, t)
+ @q,@r,@s,@t,@k = q,r,s,t,0
+ end
+
+ def next!()
+ @q = @k = @k + 1
+ @r = 4 * @k + 2
+ @s = 0
+ @t = 2 * @k + 1
+ self
+ end
+
+ def extract(j)
+ (@q * j + @r) / (@s * j + @t)
+ end
+
+ def compose(a)
+ self.class.new( @q * a.q,
+ @q * a.r + r * a.t,
+ @s * a.q + t * a.s,
+ @s * a.r + t * a.t
+ )
+ end
+
+ def qrst *args
+ initialize *args
+ self
+ end
+
+
+end
+
+
+WIDTH = 10
+n = 2_500 # Integer(ARGV[0])
+j = 0
+
+digits = PiDigitSpigot.new
+
+while n > 0
+ if n >= WIDTH
+ WIDTH.times {print digits.next!}
+ j += WIDTH
+ else
+ n.times {print digits.next!}
+ (WIDTH-n).times {print " "}
+ j += n
+ end
+ puts "\t:"+j.to_s
+ n -= WIDTH
+end
+
diff --git a/benchmark/bm_so_spectralnorm.rb b/benchmark/bm_so_spectralnorm.rb
new file mode 100644
index 0000000000..3617da5236
--- /dev/null
+++ b/benchmark/bm_so_spectralnorm.rb
@@ -0,0 +1,50 @@
+# The Computer Language Shootout
+# http://shootout.alioth.debian.org/
+# Contributed by Sokolov Yura
+
+def eval_A(i,j)
+ return 1.0/((i+j)*(i+j+1)/2+i+1)
+end
+
+def eval_A_times_u(u)
+ v, i = nil, nil
+ (0..u.length-1).collect { |i|
+ v = 0
+ for j in 0..u.length-1
+ v += eval_A(i,j)*u[j]
+ end
+ v
+ }
+end
+
+def eval_At_times_u(u)
+ v, i = nil, nil
+ (0..u.length-1).collect{|i|
+ v = 0
+ for j in 0..u.length-1
+ v += eval_A(j,i)*u[j]
+ end
+ v
+ }
+end
+
+def eval_AtA_times_u(u)
+ return eval_At_times_u(eval_A_times_u(u))
+end
+
+n = 500 # ARGV[0].to_i
+
+u=[1]*n
+for i in 1..10
+ v=eval_AtA_times_u(u)
+ u=eval_AtA_times_u(v)
+end
+vBv=0
+vv=0
+for i in 0..n-1
+ vBv += u[i]*v[i]
+ vv += v[i]*v[i]
+end
+
+str = "%0.9f" % (Math.sqrt(vBv/vv)), "\n"
+# print str
diff --git a/benchmark/bm_vm1_ivar_set.rb b/benchmark/bm_vm1_ivar_set.rb
new file mode 100644
index 0000000000..023e397e92
--- /dev/null
+++ b/benchmark/bm_vm1_ivar_set.rb
@@ -0,0 +1,6 @@
+i = 0
+while i<30_000_000 # while loop 1
+ i+= 1
+ @a = 1
+ @b = 2
+end
diff --git a/benchmark/driver.rb b/benchmark/driver.rb
index cb5a6d3734..2de699cb1d 100644
--- a/benchmark/driver.rb
+++ b/benchmark/driver.rb
@@ -77,6 +77,7 @@ class BenchmarkDriver
if @verbose
message '-----------------------------------------------------------'
message 'raw data:'
+ message
message PP.pp(@results, "", 79)
message
message "Elapesed time: #{Time.now - @start_time} (sec)"
@@ -158,6 +159,7 @@ class BenchmarkDriver
output
output '-----------------------------------------------------------'
output name
+ output
output File.read(file)
output
end