summaryrefslogtreecommitdiff
path: root/rational.c
diff options
context:
space:
mode:
authortadf <tadf@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2012-11-03 14:39:50 (GMT)
committertadf <tadf@b2dd03c8-39d4-4d8f-98ff-823fe69b080e>2012-11-03 14:39:50 (GMT)
commitd4199057bc9767d05bc05e90a4ce5de642306396 (patch)
tree341b6b7bc40916d83112d3007675c4a03a0e256c /rational.c
parent64bb9749afa914d08a022ec67159ee40b24baaf1 (diff)
* complex.c: modified doc.
* rational.c: ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@37460 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
Diffstat (limited to 'rational.c')
-rw-r--r--rational.c62
1 files changed, 4 insertions, 58 deletions
diff --git a/rational.c b/rational.c
index 99bb06a..c06794f 100644
--- a/rational.c
+++ b/rational.c
@@ -548,6 +548,8 @@ f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y)
* Rational(x[, y]) -> numeric
*
* Returns x/y;
+ *
+ * Rational(1, 2) #=> (1/2)
*/
static VALUE
nurat_f_rational(int argc, VALUE *argv, VALUE klass)
@@ -561,8 +563,6 @@ nurat_f_rational(int argc, VALUE *argv, VALUE klass)
*
* Returns the numerator.
*
- * For example:
- *
* Rational(7).numerator #=> 7
* Rational(7, 1).numerator #=> 7
* Rational(9, -4).numerator #=> -9
@@ -581,8 +581,6 @@ nurat_numerator(VALUE self)
*
* Returns the denominator (always positive).
*
- * For example:
- *
* Rational(7).denominator #=> 1
* Rational(7, 1).denominator #=> 1
* Rational(9, -4).denominator #=> 4
@@ -687,8 +685,6 @@ f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
*
* Performs addition.
*
- * For example:
- *
* Rational(2, 3) + Rational(2, 3) #=> (4/3)
* Rational(900) + Rational(1) #=> (900/1)
* Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
@@ -729,8 +725,6 @@ nurat_add(VALUE self, VALUE other)
*
* Performs subtraction.
*
- * For example:
- *
* Rational(2, 3) - Rational(2, 3) #=> (0/1)
* Rational(900) - Rational(1) #=> (899/1)
* Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
@@ -810,8 +804,6 @@ f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
*
* Performs multiplication.
*
- * For example:
- *
* Rational(2, 3) * Rational(2, 3) #=> (4/9)
* Rational(900) * Rational(1) #=> (900/1)
* Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
@@ -853,8 +845,6 @@ nurat_mul(VALUE self, VALUE other)
*
* Performs division.
*
- * For example:
- *
* Rational(2, 3) / Rational(2, 3) #=> (1/1)
* Rational(900) / Rational(1) #=> (900/1)
* Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
@@ -913,8 +903,6 @@ nurat_div(VALUE self, VALUE other)
*
* Performs division and returns the value as a float.
*
- * For example:
- *
* Rational(2, 3).fdiv(1) #=> 0.6666666666666666
* Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
* Rational(2).fdiv(3) #=> 0.6666666666666666
@@ -933,8 +921,6 @@ nurat_fdiv(VALUE self, VALUE other)
*
* Performs exponentiation.
*
- * For example:
- *
* Rational(2) ** Rational(3) #=> (8/1)
* Rational(10) ** -2 #=> (1/100)
* Rational(10) ** -2.0 #=> 0.01
@@ -995,8 +981,6 @@ nurat_expt(VALUE self, VALUE other)
*
* Performs comparison and returns -1, 0, or +1.
*
- * For example:
- *
* Rational(2, 3) <=> Rational(2, 3) #=> 0
* Rational(5) <=> 5 #=> 0
* Rational(2,3) <=> Rational(1,3) #=> 1
@@ -1046,8 +1030,6 @@ nurat_cmp(VALUE self, VALUE other)
*
* Returns true if rat equals object numerically.
*
- * For example:
- *
* Rational(2, 3) == Rational(2, 3) #=> true
* Rational(5) == 5 #=> true
* Rational(0) == 0.0 #=> true
@@ -1172,8 +1154,6 @@ nurat_ceil(VALUE self)
* Equivalent to
* rat.truncate.
*
- * For example:
- *
* Rational(2, 3).to_i #=> 0
* Rational(3).to_i #=> 3
* Rational(300.6).to_i #=> 300
@@ -1246,8 +1226,6 @@ f_round_common(int argc, VALUE *argv, VALUE self, VALUE (*func)(VALUE))
*
* Returns the truncated value (toward negative infinity).
*
- * For example:
- *
* Rational(3).floor #=> 3
* Rational(2, 3).floor #=> 0
* Rational(-3, 2).floor #=> -1
@@ -1272,8 +1250,6 @@ nurat_floor_n(int argc, VALUE *argv, VALUE self)
*
* Returns the truncated value (toward positive infinity).
*
- * For example:
- *
* Rational(3).ceil #=> 3
* Rational(2, 3).ceil #=> 1
* Rational(-3, 2).ceil #=> -1
@@ -1298,8 +1274,6 @@ nurat_ceil_n(int argc, VALUE *argv, VALUE self)
*
* Returns the truncated value (toward zero).
*
- * For example:
- *
* Rational(3).truncate #=> 3
* Rational(2, 3).truncate #=> 0
* Rational(-3, 2).truncate #=> -1
@@ -1325,8 +1299,6 @@ nurat_truncate_n(int argc, VALUE *argv, VALUE self)
* Returns the truncated value (toward the nearest integer;
* 0.5 => 1; -0.5 => -1).
*
- * For example:
- *
* Rational(3).round #=> 3
* Rational(2, 3).round #=> 1
* Rational(-3, 2).round #=> -2
@@ -1350,8 +1322,6 @@ nurat_round_n(int argc, VALUE *argv, VALUE self)
*
* Return the value as a float.
*
- * For example:
- *
* Rational(2).to_f #=> 2.0
* Rational(9, 4).to_f #=> 2.25
* Rational(-3, 4).to_f #=> -0.75
@@ -1370,8 +1340,6 @@ nurat_to_f(VALUE self)
*
* Returns self.
*
- * For example:
- *
* Rational(2).to_r #=> (2/1)
* Rational(-8, 6).to_r #=> (-4/3)
*/
@@ -1486,8 +1454,6 @@ nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q)
* argument eps is given (rat-|eps| <= result <= rat+|eps|), self
* otherwise.
*
- * For example:
- *
* r = Rational(5033165, 16777216)
* r.rationalize #=> (5033165/16777216)
* r.rationalize(Rational('0.01')) #=> (3/10)
@@ -1551,11 +1517,9 @@ f_format(VALUE self, VALUE (*func)(VALUE))
*
* Returns the value as a string.
*
- * For example:
- *
* Rational(2).to_s #=> "2/1"
* Rational(-8, 6).to_s #=> "-4/3"
- * Rational('0.5').to_s #=> "1/2"
+ * Rational('1/2').to_s #=> "1/2"
*/
static VALUE
nurat_to_s(VALUE self)
@@ -1569,11 +1533,9 @@ nurat_to_s(VALUE self)
*
* Returns the value as a string for inspection.
*
- * For example:
- *
* Rational(2).inspect #=> "(2/1)"
* Rational(-8, 6).inspect #=> "(-4/3)"
- * Rational('0.5').inspect #=> "(1/2)"
+ * Rational('1/2').inspect #=> "(1/2)"
*/
static VALUE
nurat_inspect(VALUE self)
@@ -1652,8 +1614,6 @@ rb_rational_reciprocal(VALUE x)
* Returns the greatest common divisor (always positive). 0.gcd(x)
* and x.gcd(0) return abs(x).
*
- * For example:
- *
* 2.gcd(2) #=> 2
* 3.gcd(-7) #=> 1
* ((1<<31)-1).gcd((1<<61)-1) #=> 1
@@ -1672,8 +1632,6 @@ rb_gcd(VALUE self, VALUE other)
* Returns the least common multiple (always positive). 0.lcm(x) and
* x.lcm(0) return zero.
*
- * For example:
- *
* 2.lcm(2) #=> 2
* 3.lcm(-7) #=> 21
* ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
@@ -1691,8 +1649,6 @@ rb_lcm(VALUE self, VALUE other)
*
* Returns an array; [int.gcd(int2), int.lcm(int2)].
*
- * For example:
- *
* 2.gcdlcm(2) #=> [2, 2]
* 3.gcdlcm(-7) #=> [1, 21]
* ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
@@ -1790,8 +1746,6 @@ integer_denominator(VALUE self)
*
* Returns the numerator. The result is machine dependent.
*
- * For example:
- *
* n = 0.3.numerator #=> 5404319552844595
* d = 0.3.denominator #=> 18014398509481984
* n.fdiv(d) #=> 0.3
@@ -1855,8 +1809,6 @@ nilclass_rationalize(int argc, VALUE *argv, VALUE self)
*
* Returns the value as a rational.
*
- * For example:
- *
* 1.to_r #=> (1/1)
* (1<<64).to_r #=> (18446744073709551616/1)
*/
@@ -1916,8 +1868,6 @@ float_decode(VALUE self)
* NOTE: 0.3.to_r isn't the same as '0.3'.to_r. The latter is
* equivalent to '3/10'.to_r, but the former isn't so.
*
- * For example:
- *
* 2.0.to_r #=> (2/1)
* 2.5.to_r #=> (5/2)
* -0.75.to_r #=> (-3/4)
@@ -1953,8 +1903,6 @@ float_to_r(VALUE self)
* <= flt+|eps|). if eps is not given, it will be chosen
* automatically.
*
- * For example:
- *
* 0.3.rationalize #=> (3/10)
* 1.333.rationalize #=> (1333/1000)
* 1.333.rationalize(0.01) #=> (4/3)
@@ -2155,8 +2103,6 @@ string_to_r_strict(VALUE self)
* NOTE: '0.3'.to_r isn't the same as 0.3.to_r. The former is
* equivalent to '3/10'.to_r, but the latter isn't so.
*
- * For example:
- *
* ' 2 '.to_r #=> (2/1)
* '300/2'.to_r #=> (150/1)
* '-9.2'.to_r #=> (-46/5)