summaryrefslogtreecommitdiff
path: root/ext/digest/sha2/sha2.c
diff options
context:
space:
mode:
authorgit <svn-admin@ruby-lang.org>2022-07-30 16:41:32 +0900
committergit <svn-admin@ruby-lang.org>2022-07-30 16:41:32 +0900
commit8a65cf3b61c60e4cb886f59a73ff6db44364bfa9 (patch)
tree62ce041f53907015ea81c2af99851f702b6bdd6b /ext/digest/sha2/sha2.c
parent48b09aae7ec5632209229dcc294dd0d75a93a17f (diff)
* expand tabs. [ci skip]
Tabs were expanded because the file did not have any tab indentation in unedited lines. Please update your editor config, and use misc/expand_tabs.rb in the pre-commit hook.
Diffstat (limited to 'ext/digest/sha2/sha2.c')
-rw-r--r--ext/digest/sha2/sha2.c1374
1 files changed, 687 insertions, 687 deletions
diff --git a/ext/digest/sha2/sha2.c b/ext/digest/sha2/sha2.c
index 21d5acbe96..2a9dbd4fce 100644
--- a/ext/digest/sha2/sha2.c
+++ b/ext/digest/sha2/sha2.c
@@ -136,17 +136,17 @@ typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
/*** ENDIAN REVERSAL MACROS *******************************************/
#if BYTE_ORDER == LITTLE_ENDIAN
#define REVERSE32(w,x) { \
- sha2_word32 tmp = (w); \
- tmp = (tmp >> 16) | (tmp << 16); \
- (x) = ((tmp & (sha2_word32)0xff00ff00UL) >> 8) | ((tmp & (sha2_word32)0x00ff00ffUL) << 8); \
+ sha2_word32 tmp = (w); \
+ tmp = (tmp >> 16) | (tmp << 16); \
+ (x) = ((tmp & (sha2_word32)0xff00ff00UL) >> 8) | ((tmp & (sha2_word32)0x00ff00ffUL) << 8); \
}
#define REVERSE64(w,x) { \
- sha2_word64 tmp = (w); \
- tmp = (tmp >> 32) | (tmp << 32); \
- tmp = ((tmp & ULL(0xff00ff00ff00ff00)) >> 8) | \
- ((tmp & ULL(0x00ff00ff00ff00ff)) << 8); \
- (x) = ((tmp & ULL(0xffff0000ffff0000)) >> 16) | \
- ((tmp & ULL(0x0000ffff0000ffff)) << 16); \
+ sha2_word64 tmp = (w); \
+ tmp = (tmp >> 32) | (tmp << 32); \
+ tmp = ((tmp & ULL(0xff00ff00ff00ff00)) >> 8) | \
+ ((tmp & ULL(0x00ff00ff00ff00ff)) << 8); \
+ (x) = ((tmp & ULL(0xffff0000ffff0000)) >> 16) | \
+ ((tmp & ULL(0x0000ffff0000ffff)) << 16); \
}
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
@@ -156,10 +156,10 @@ typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
* 64-bit words):
*/
#define ADDINC128(w,n) { \
- (w)[0] += (sha2_word64)(n); \
- if ((w)[0] < (n)) { \
- (w)[1]++; \
- } \
+ (w)[0] += (sha2_word64)(n); \
+ if ((w)[0] < (n)) { \
+ (w)[1]++; \
+ } \
}
/*
@@ -235,102 +235,102 @@ void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
/* Hash constant words K for SHA-256: */
static const sha2_word32 K256[64] = {
- 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
- 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
- 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
- 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
- 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
- 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
- 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
- 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
- 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
- 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
- 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
- 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
- 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
- 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
- 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
- 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
+ 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
+ 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
+ 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
+ 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
+ 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
+ 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
+ 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
+ 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
+ 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
+ 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
+ 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
+ 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
+ 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
+ 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
+ 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
+ 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
/* Initial hash value H for SHA-256: */
static const sha2_word32 sha256_initial_hash_value[8] = {
- 0x6a09e667UL,
- 0xbb67ae85UL,
- 0x3c6ef372UL,
- 0xa54ff53aUL,
- 0x510e527fUL,
- 0x9b05688cUL,
- 0x1f83d9abUL,
- 0x5be0cd19UL
+ 0x6a09e667UL,
+ 0xbb67ae85UL,
+ 0x3c6ef372UL,
+ 0xa54ff53aUL,
+ 0x510e527fUL,
+ 0x9b05688cUL,
+ 0x1f83d9abUL,
+ 0x5be0cd19UL
};
/* Hash constant words K for SHA-384 and SHA-512: */
static const sha2_word64 K512[80] = {
- ULL(0x428a2f98d728ae22), ULL(0x7137449123ef65cd),
- ULL(0xb5c0fbcfec4d3b2f), ULL(0xe9b5dba58189dbbc),
- ULL(0x3956c25bf348b538), ULL(0x59f111f1b605d019),
- ULL(0x923f82a4af194f9b), ULL(0xab1c5ed5da6d8118),
- ULL(0xd807aa98a3030242), ULL(0x12835b0145706fbe),
- ULL(0x243185be4ee4b28c), ULL(0x550c7dc3d5ffb4e2),
- ULL(0x72be5d74f27b896f), ULL(0x80deb1fe3b1696b1),
- ULL(0x9bdc06a725c71235), ULL(0xc19bf174cf692694),
- ULL(0xe49b69c19ef14ad2), ULL(0xefbe4786384f25e3),
- ULL(0x0fc19dc68b8cd5b5), ULL(0x240ca1cc77ac9c65),
- ULL(0x2de92c6f592b0275), ULL(0x4a7484aa6ea6e483),
- ULL(0x5cb0a9dcbd41fbd4), ULL(0x76f988da831153b5),
- ULL(0x983e5152ee66dfab), ULL(0xa831c66d2db43210),
- ULL(0xb00327c898fb213f), ULL(0xbf597fc7beef0ee4),
- ULL(0xc6e00bf33da88fc2), ULL(0xd5a79147930aa725),
- ULL(0x06ca6351e003826f), ULL(0x142929670a0e6e70),
- ULL(0x27b70a8546d22ffc), ULL(0x2e1b21385c26c926),
- ULL(0x4d2c6dfc5ac42aed), ULL(0x53380d139d95b3df),
- ULL(0x650a73548baf63de), ULL(0x766a0abb3c77b2a8),
- ULL(0x81c2c92e47edaee6), ULL(0x92722c851482353b),
- ULL(0xa2bfe8a14cf10364), ULL(0xa81a664bbc423001),
- ULL(0xc24b8b70d0f89791), ULL(0xc76c51a30654be30),
- ULL(0xd192e819d6ef5218), ULL(0xd69906245565a910),
- ULL(0xf40e35855771202a), ULL(0x106aa07032bbd1b8),
- ULL(0x19a4c116b8d2d0c8), ULL(0x1e376c085141ab53),
- ULL(0x2748774cdf8eeb99), ULL(0x34b0bcb5e19b48a8),
- ULL(0x391c0cb3c5c95a63), ULL(0x4ed8aa4ae3418acb),
- ULL(0x5b9cca4f7763e373), ULL(0x682e6ff3d6b2b8a3),
- ULL(0x748f82ee5defb2fc), ULL(0x78a5636f43172f60),
- ULL(0x84c87814a1f0ab72), ULL(0x8cc702081a6439ec),
- ULL(0x90befffa23631e28), ULL(0xa4506cebde82bde9),
- ULL(0xbef9a3f7b2c67915), ULL(0xc67178f2e372532b),
- ULL(0xca273eceea26619c), ULL(0xd186b8c721c0c207),
- ULL(0xeada7dd6cde0eb1e), ULL(0xf57d4f7fee6ed178),
- ULL(0x06f067aa72176fba), ULL(0x0a637dc5a2c898a6),
- ULL(0x113f9804bef90dae), ULL(0x1b710b35131c471b),
- ULL(0x28db77f523047d84), ULL(0x32caab7b40c72493),
- ULL(0x3c9ebe0a15c9bebc), ULL(0x431d67c49c100d4c),
- ULL(0x4cc5d4becb3e42b6), ULL(0x597f299cfc657e2a),
- ULL(0x5fcb6fab3ad6faec), ULL(0x6c44198c4a475817)
+ ULL(0x428a2f98d728ae22), ULL(0x7137449123ef65cd),
+ ULL(0xb5c0fbcfec4d3b2f), ULL(0xe9b5dba58189dbbc),
+ ULL(0x3956c25bf348b538), ULL(0x59f111f1b605d019),
+ ULL(0x923f82a4af194f9b), ULL(0xab1c5ed5da6d8118),
+ ULL(0xd807aa98a3030242), ULL(0x12835b0145706fbe),
+ ULL(0x243185be4ee4b28c), ULL(0x550c7dc3d5ffb4e2),
+ ULL(0x72be5d74f27b896f), ULL(0x80deb1fe3b1696b1),
+ ULL(0x9bdc06a725c71235), ULL(0xc19bf174cf692694),
+ ULL(0xe49b69c19ef14ad2), ULL(0xefbe4786384f25e3),
+ ULL(0x0fc19dc68b8cd5b5), ULL(0x240ca1cc77ac9c65),
+ ULL(0x2de92c6f592b0275), ULL(0x4a7484aa6ea6e483),
+ ULL(0x5cb0a9dcbd41fbd4), ULL(0x76f988da831153b5),
+ ULL(0x983e5152ee66dfab), ULL(0xa831c66d2db43210),
+ ULL(0xb00327c898fb213f), ULL(0xbf597fc7beef0ee4),
+ ULL(0xc6e00bf33da88fc2), ULL(0xd5a79147930aa725),
+ ULL(0x06ca6351e003826f), ULL(0x142929670a0e6e70),
+ ULL(0x27b70a8546d22ffc), ULL(0x2e1b21385c26c926),
+ ULL(0x4d2c6dfc5ac42aed), ULL(0x53380d139d95b3df),
+ ULL(0x650a73548baf63de), ULL(0x766a0abb3c77b2a8),
+ ULL(0x81c2c92e47edaee6), ULL(0x92722c851482353b),
+ ULL(0xa2bfe8a14cf10364), ULL(0xa81a664bbc423001),
+ ULL(0xc24b8b70d0f89791), ULL(0xc76c51a30654be30),
+ ULL(0xd192e819d6ef5218), ULL(0xd69906245565a910),
+ ULL(0xf40e35855771202a), ULL(0x106aa07032bbd1b8),
+ ULL(0x19a4c116b8d2d0c8), ULL(0x1e376c085141ab53),
+ ULL(0x2748774cdf8eeb99), ULL(0x34b0bcb5e19b48a8),
+ ULL(0x391c0cb3c5c95a63), ULL(0x4ed8aa4ae3418acb),
+ ULL(0x5b9cca4f7763e373), ULL(0x682e6ff3d6b2b8a3),
+ ULL(0x748f82ee5defb2fc), ULL(0x78a5636f43172f60),
+ ULL(0x84c87814a1f0ab72), ULL(0x8cc702081a6439ec),
+ ULL(0x90befffa23631e28), ULL(0xa4506cebde82bde9),
+ ULL(0xbef9a3f7b2c67915), ULL(0xc67178f2e372532b),
+ ULL(0xca273eceea26619c), ULL(0xd186b8c721c0c207),
+ ULL(0xeada7dd6cde0eb1e), ULL(0xf57d4f7fee6ed178),
+ ULL(0x06f067aa72176fba), ULL(0x0a637dc5a2c898a6),
+ ULL(0x113f9804bef90dae), ULL(0x1b710b35131c471b),
+ ULL(0x28db77f523047d84), ULL(0x32caab7b40c72493),
+ ULL(0x3c9ebe0a15c9bebc), ULL(0x431d67c49c100d4c),
+ ULL(0x4cc5d4becb3e42b6), ULL(0x597f299cfc657e2a),
+ ULL(0x5fcb6fab3ad6faec), ULL(0x6c44198c4a475817)
};
/* Initial hash value H for SHA-384 */
static const sha2_word64 sha384_initial_hash_value[8] = {
- ULL(0xcbbb9d5dc1059ed8),
- ULL(0x629a292a367cd507),
- ULL(0x9159015a3070dd17),
- ULL(0x152fecd8f70e5939),
- ULL(0x67332667ffc00b31),
- ULL(0x8eb44a8768581511),
- ULL(0xdb0c2e0d64f98fa7),
- ULL(0x47b5481dbefa4fa4)
+ ULL(0xcbbb9d5dc1059ed8),
+ ULL(0x629a292a367cd507),
+ ULL(0x9159015a3070dd17),
+ ULL(0x152fecd8f70e5939),
+ ULL(0x67332667ffc00b31),
+ ULL(0x8eb44a8768581511),
+ ULL(0xdb0c2e0d64f98fa7),
+ ULL(0x47b5481dbefa4fa4)
};
/* Initial hash value H for SHA-512 */
static const sha2_word64 sha512_initial_hash_value[8] = {
- ULL(0x6a09e667f3bcc908),
- ULL(0xbb67ae8584caa73b),
- ULL(0x3c6ef372fe94f82b),
- ULL(0xa54ff53a5f1d36f1),
- ULL(0x510e527fade682d1),
- ULL(0x9b05688c2b3e6c1f),
- ULL(0x1f83d9abfb41bd6b),
- ULL(0x5be0cd19137e2179)
+ ULL(0x6a09e667f3bcc908),
+ ULL(0xbb67ae8584caa73b),
+ ULL(0x3c6ef372fe94f82b),
+ ULL(0xa54ff53a5f1d36f1),
+ ULL(0x510e527fade682d1),
+ ULL(0x9b05688c2b3e6c1f),
+ ULL(0x1f83d9abfb41bd6b),
+ ULL(0x5be0cd19137e2179)
};
/*
@@ -342,13 +342,13 @@ static const char *sha2_hex_digits = "0123456789abcdef";
/*** SHA-256: *********************************************************/
int SHA256_Init(SHA256_CTX* context) {
- if (context == (SHA256_CTX*)0) {
- return 0;
- }
- MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
- MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
- context->bitcount = 0;
- return 1;
+ if (context == (SHA256_CTX*)0) {
+ return 0;
+ }
+ MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
+ MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
+ context->bitcount = 0;
+ return 1;
}
#ifdef SHA2_UNROLL_TRANSFORM
@@ -358,328 +358,328 @@ int SHA256_Init(SHA256_CTX* context) {
#if BYTE_ORDER == LITTLE_ENDIAN
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
- REVERSE32(*data++, W256[j]); \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+ REVERSE32(*data++, W256[j]); \
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
K256[j] + W256[j]; \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
#else /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
- K256[j] + (W256[j] = *data++); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
+ K256[j] + (W256[j] = *data++); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND256(a,b,c,d,e,f,g,h) \
- s0 = W256[(j+1)&0x0f]; \
- s0 = sigma0_256(s0); \
- s1 = W256[(j+14)&0x0f]; \
- s1 = sigma1_256(s1); \
- T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
- j++
+ s0 = W256[(j+1)&0x0f]; \
+ s0 = sigma0_256(s0); \
+ s1 = W256[(j+14)&0x0f]; \
+ s1 = sigma1_256(s1); \
+ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
+ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
+ (d) += T1; \
+ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
+ j++
void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
- sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
- sha2_word32 T1, *W256;
- int j;
-
- W256 = (sha2_word32*)context->buffer;
-
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
-
- j = 0;
- do {
- /* Rounds 0 to 15 (unrolled): */
- ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
- ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
- ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
- ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
- ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
- ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
- ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
- ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
- } while (j < 16);
-
- /* Now for the remaining rounds to 64: */
- do {
- ROUND256(a,b,c,d,e,f,g,h);
- ROUND256(h,a,b,c,d,e,f,g);
- ROUND256(g,h,a,b,c,d,e,f);
- ROUND256(f,g,h,a,b,c,d,e);
- ROUND256(e,f,g,h,a,b,c,d);
- ROUND256(d,e,f,g,h,a,b,c);
- ROUND256(c,d,e,f,g,h,a,b);
- ROUND256(b,c,d,e,f,g,h,a);
- } while (j < 64);
-
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = 0;
+ sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
+ sha2_word32 T1, *W256;
+ int j;
+
+ W256 = (sha2_word32*)context->buffer;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->state[0];
+ b = context->state[1];
+ c = context->state[2];
+ d = context->state[3];
+ e = context->state[4];
+ f = context->state[5];
+ g = context->state[6];
+ h = context->state[7];
+
+ j = 0;
+ do {
+ /* Rounds 0 to 15 (unrolled): */
+ ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
+ ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
+ ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
+ ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
+ ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
+ ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
+ ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
+ ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
+ } while (j < 16);
+
+ /* Now for the remaining rounds to 64: */
+ do {
+ ROUND256(a,b,c,d,e,f,g,h);
+ ROUND256(h,a,b,c,d,e,f,g);
+ ROUND256(g,h,a,b,c,d,e,f);
+ ROUND256(f,g,h,a,b,c,d,e);
+ ROUND256(e,f,g,h,a,b,c,d);
+ ROUND256(d,e,f,g,h,a,b,c);
+ ROUND256(c,d,e,f,g,h,a,b);
+ ROUND256(b,c,d,e,f,g,h,a);
+ } while (j < 64);
+
+ /* Compute the current intermediate hash value */
+ context->state[0] += a;
+ context->state[1] += b;
+ context->state[2] += c;
+ context->state[3] += d;
+ context->state[4] += e;
+ context->state[5] += f;
+ context->state[6] += g;
+ context->state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
- sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
- sha2_word32 T1, T2, *W256;
- int j;
-
- W256 = (sha2_word32*)context->buffer;
-
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
-
- j = 0;
- do {
+ sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
+ sha2_word32 T1, T2, *W256;
+ int j;
+
+ W256 = (sha2_word32*)context->buffer;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->state[0];
+ b = context->state[1];
+ c = context->state[2];
+ d = context->state[3];
+ e = context->state[4];
+ f = context->state[5];
+ g = context->state[6];
+ h = context->state[7];
+
+ j = 0;
+ do {
#if BYTE_ORDER == LITTLE_ENDIAN
- /* Copy data while converting to host byte order */
- REVERSE32(*data++,W256[j]);
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
+ /* Copy data while converting to host byte order */
+ REVERSE32(*data++,W256[j]);
+ /* Apply the SHA-256 compression function to update a..h */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
- /* Apply the SHA-256 compression function to update a..h with copy */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
+ /* Apply the SHA-256 compression function to update a..h with copy */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 16);
-
- do {
- /* Part of the message block expansion: */
- s0 = W256[(j+1)&0x0f];
- s0 = sigma0_256(s0);
- s1 = W256[(j+14)&0x0f];
- s1 = sigma1_256(s1);
-
- /* Apply the SHA-256 compression function to update a..h */
- T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
- (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
- T2 = Sigma0_256(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 64);
-
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = T2 = 0;
+ T2 = Sigma0_256(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 16);
+
+ do {
+ /* Part of the message block expansion: */
+ s0 = W256[(j+1)&0x0f];
+ s0 = sigma0_256(s0);
+ s1 = W256[(j+14)&0x0f];
+ s1 = sigma1_256(s1);
+
+ /* Apply the SHA-256 compression function to update a..h */
+ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
+ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
+ T2 = Sigma0_256(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 64);
+
+ /* Compute the current intermediate hash value */
+ context->state[0] += a;
+ context->state[1] += b;
+ context->state[2] += c;
+ context->state[3] += d;
+ context->state[4] += e;
+ context->state[5] += f;
+ context->state[6] += g;
+ context->state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
- unsigned int freespace, usedspace;
-
- if (len == 0) {
- /* Calling with no data is valid - we do nothing */
- return;
- }
-
- /* Sanity check: */
- assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
-
- usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
- if (usedspace > 0) {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA256_BLOCK_LENGTH - usedspace;
-
- if (len >= freespace) {
- /* Fill the buffer completely and process it */
- MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
- context->bitcount += freespace << 3;
- len -= freespace;
- data += freespace;
- SHA256_Transform(context, (sha2_word32*)context->buffer);
- } else {
- /* The buffer is not yet full */
- MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
- context->bitcount += len << 3;
- /* Clean up: */
- usedspace = freespace = 0;
- return;
- }
- }
- while (len >= SHA256_BLOCK_LENGTH) {
- /* Process as many complete blocks as we can */
- MEMCPY_BCOPY(context->buffer, data, SHA256_BLOCK_LENGTH);
- SHA256_Transform(context, (sha2_word32*)context->buffer);
- context->bitcount += SHA256_BLOCK_LENGTH << 3;
- len -= SHA256_BLOCK_LENGTH;
- data += SHA256_BLOCK_LENGTH;
- }
- if (len > 0) {
- /* There's left-overs, so save 'em */
- MEMCPY_BCOPY(context->buffer, data, len);
- context->bitcount += len << 3;
- }
- /* Clean up: */
- usedspace = freespace = 0;
+ unsigned int freespace, usedspace;
+
+ if (len == 0) {
+ /* Calling with no data is valid - we do nothing */
+ return;
+ }
+
+ /* Sanity check: */
+ assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
+
+ usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
+ if (usedspace > 0) {
+ /* Calculate how much free space is available in the buffer */
+ freespace = SHA256_BLOCK_LENGTH - usedspace;
+
+ if (len >= freespace) {
+ /* Fill the buffer completely and process it */
+ MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
+ context->bitcount += freespace << 3;
+ len -= freespace;
+ data += freespace;
+ SHA256_Transform(context, (sha2_word32*)context->buffer);
+ } else {
+ /* The buffer is not yet full */
+ MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
+ context->bitcount += len << 3;
+ /* Clean up: */
+ usedspace = freespace = 0;
+ return;
+ }
+ }
+ while (len >= SHA256_BLOCK_LENGTH) {
+ /* Process as many complete blocks as we can */
+ MEMCPY_BCOPY(context->buffer, data, SHA256_BLOCK_LENGTH);
+ SHA256_Transform(context, (sha2_word32*)context->buffer);
+ context->bitcount += SHA256_BLOCK_LENGTH << 3;
+ len -= SHA256_BLOCK_LENGTH;
+ data += SHA256_BLOCK_LENGTH;
+ }
+ if (len > 0) {
+ /* There's left-overs, so save 'em */
+ MEMCPY_BCOPY(context->buffer, data, len);
+ context->bitcount += len << 3;
+ }
+ /* Clean up: */
+ usedspace = freespace = 0;
}
int SHA256_Final(sha2_byte digest[SHA256_DIGEST_LENGTH], SHA256_CTX* context) {
- sha2_word32 *d = (sha2_word32*)digest;
- unsigned int usedspace;
+ sha2_word32 *d = (sha2_word32*)digest;
+ unsigned int usedspace;
- /* Sanity check: */
- assert(context != (SHA256_CTX*)0);
+ /* Sanity check: */
+ assert(context != (SHA256_CTX*)0);
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != (sha2_byte*)0) {
- usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
+ /* If no digest buffer is passed, we don't bother doing this: */
+ if (digest != (sha2_byte*)0) {
+ usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH);
#if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert FROM host byte order */
- REVERSE64(context->bitcount,context->bitcount);
+ /* Convert FROM host byte order */
+ REVERSE64(context->bitcount,context->bitcount);
#endif
- if (usedspace > 0) {
- /* Begin padding with a 1 bit: */
- context->buffer[usedspace++] = 0x80;
-
- if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
- /* Set-up for the last transform: */
- MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
- } else {
- if (usedspace < SHA256_BLOCK_LENGTH) {
- MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
- }
- /* Do second-to-last transform: */
- SHA256_Transform(context, (sha2_word32*)context->buffer);
-
- /* And set-up for the last transform: */
- MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
- }
- } else {
- /* Set-up for the last transform: */
- MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
-
- /* Begin padding with a 1 bit: */
- *context->buffer = 0x80;
- }
- /* Set the bit count: */
- MEMCPY_BCOPY(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], &context->bitcount,
- sizeof(sha2_word64));
-
- /* Final transform: */
- SHA256_Transform(context, (sha2_word32*)context->buffer);
+ if (usedspace > 0) {
+ /* Begin padding with a 1 bit: */
+ context->buffer[usedspace++] = 0x80;
+
+ if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
+ } else {
+ if (usedspace < SHA256_BLOCK_LENGTH) {
+ MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
+ }
+ /* Do second-to-last transform: */
+ SHA256_Transform(context, (sha2_word32*)context->buffer);
+
+ /* And set-up for the last transform: */
+ MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
+ }
+ } else {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
+
+ /* Begin padding with a 1 bit: */
+ *context->buffer = 0x80;
+ }
+ /* Set the bit count: */
+ MEMCPY_BCOPY(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], &context->bitcount,
+ sizeof(sha2_word64));
+
+ /* Final transform: */
+ SHA256_Transform(context, (sha2_word32*)context->buffer);
#if BYTE_ORDER == LITTLE_ENDIAN
- {
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 8; j++) {
- REVERSE32(context->state[j],context->state[j]);
- *d++ = context->state[j];
- }
- }
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < 8; j++) {
+ REVERSE32(context->state[j],context->state[j]);
+ *d++ = context->state[j];
+ }
+ }
#else
- MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
+ MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
#endif
- }
+ }
- /* Clean up state data: */
- MEMSET_BZERO(context, sizeof(*context));
- usedspace = 0;
- return 1;
+ /* Clean up state data: */
+ MEMSET_BZERO(context, sizeof(*context));
+ usedspace = 0;
+ return 1;
}
char *SHA256_End(SHA256_CTX* context, char buffer[SHA256_DIGEST_STRING_LENGTH]) {
- sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
- int i;
-
- /* Sanity check: */
- assert(context != (SHA256_CTX*)0);
-
- if (buffer != (char*)0) {
- SHA256_Final(digest, context);
- for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
- *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
- *buffer++ = sha2_hex_digits[*d & 0x0f];
- d++;
- }
- *buffer = (char)0;
- } else {
- MEMSET_BZERO(context, sizeof(*context));
- }
- MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
- return buffer;
+ sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
+ int i;
+
+ /* Sanity check: */
+ assert(context != (SHA256_CTX*)0);
+
+ if (buffer != (char*)0) {
+ SHA256_Final(digest, context);
+ for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
+ *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha2_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(*context));
+ }
+ MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
+ return buffer;
}
char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
- SHA256_CTX context;
+ SHA256_CTX context;
- SHA256_Init(&context);
- SHA256_Update(&context, data, len);
- return SHA256_End(&context, digest);
+ SHA256_Init(&context);
+ SHA256_Update(&context, data, len);
+ return SHA256_End(&context, digest);
}
/*** SHA-512: *********************************************************/
int SHA512_Init(SHA512_CTX* context) {
- if (context == (SHA512_CTX*)0) {
- return 0;
- }
- MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
- MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
- context->bitcount[0] = context->bitcount[1] = 0;
- return 1;
+ if (context == (SHA512_CTX*)0) {
+ return 0;
+ }
+ MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
+ MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
+ context->bitcount[0] = context->bitcount[1] = 0;
+ return 1;
}
#ifdef SHA2_UNROLL_TRANSFORM
@@ -688,394 +688,394 @@ int SHA512_Init(SHA512_CTX* context) {
#if BYTE_ORDER == LITTLE_ENDIAN
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
- REVERSE64(*data++, W512[j]); \
- T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
+ REVERSE64(*data++, W512[j]); \
+ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + W512[j]; \
- (d) += T1, \
- (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
- j++
+ (d) += T1, \
+ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
+ j++
#else /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
- T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
+ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
K512[j] + (W512[j] = *data++); \
- (d) += T1; \
- (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
- j++
+ (d) += T1; \
+ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
+ j++
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND512(a,b,c,d,e,f,g,h) \
- s0 = W512[(j+1)&0x0f]; \
- s0 = sigma0_512(s0); \
- s1 = W512[(j+14)&0x0f]; \
- s1 = sigma1_512(s1); \
- T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
+ s0 = W512[(j+1)&0x0f]; \
+ s0 = sigma0_512(s0); \
+ s1 = W512[(j+14)&0x0f]; \
+ s1 = sigma1_512(s1); \
+ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
(W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
- (d) += T1; \
- (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
- j++
+ (d) += T1; \
+ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
+ j++
void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
- sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
- sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
- int j;
-
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
-
- j = 0;
- do {
- ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
- ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
- ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
- ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
- ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
- ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
- ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
- ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
- } while (j < 16);
-
- /* Now for the remaining rounds up to 79: */
- do {
- ROUND512(a,b,c,d,e,f,g,h);
- ROUND512(h,a,b,c,d,e,f,g);
- ROUND512(g,h,a,b,c,d,e,f);
- ROUND512(f,g,h,a,b,c,d,e);
- ROUND512(e,f,g,h,a,b,c,d);
- ROUND512(d,e,f,g,h,a,b,c);
- ROUND512(c,d,e,f,g,h,a,b);
- ROUND512(b,c,d,e,f,g,h,a);
- } while (j < 80);
-
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = 0;
+ sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
+ sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
+ int j;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->state[0];
+ b = context->state[1];
+ c = context->state[2];
+ d = context->state[3];
+ e = context->state[4];
+ f = context->state[5];
+ g = context->state[6];
+ h = context->state[7];
+
+ j = 0;
+ do {
+ ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
+ ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
+ ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
+ ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
+ ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
+ ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
+ ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
+ ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
+ } while (j < 16);
+
+ /* Now for the remaining rounds up to 79: */
+ do {
+ ROUND512(a,b,c,d,e,f,g,h);
+ ROUND512(h,a,b,c,d,e,f,g);
+ ROUND512(g,h,a,b,c,d,e,f);
+ ROUND512(f,g,h,a,b,c,d,e);
+ ROUND512(e,f,g,h,a,b,c,d);
+ ROUND512(d,e,f,g,h,a,b,c);
+ ROUND512(c,d,e,f,g,h,a,b);
+ ROUND512(b,c,d,e,f,g,h,a);
+ } while (j < 80);
+
+ /* Compute the current intermediate hash value */
+ context->state[0] += a;
+ context->state[1] += b;
+ context->state[2] += c;
+ context->state[3] += d;
+ context->state[4] += e;
+ context->state[5] += f;
+ context->state[6] += g;
+ context->state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = 0;
}
#else /* SHA2_UNROLL_TRANSFORM */
void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
- sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
- sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
- int j;
-
- /* Initialize registers with the prev. intermediate value */
- a = context->state[0];
- b = context->state[1];
- c = context->state[2];
- d = context->state[3];
- e = context->state[4];
- f = context->state[5];
- g = context->state[6];
- h = context->state[7];
-
- j = 0;
- do {
+ sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
+ sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
+ int j;
+
+ /* Initialize registers with the prev. intermediate value */
+ a = context->state[0];
+ b = context->state[1];
+ c = context->state[2];
+ d = context->state[3];
+ e = context->state[4];
+ f = context->state[5];
+ g = context->state[6];
+ h = context->state[7];
+
+ j = 0;
+ do {
#if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert TO host byte order */
- REVERSE64(*data++, W512[j]);
- /* Apply the SHA-512 compression function to update a..h */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
+ /* Convert TO host byte order */
+ REVERSE64(*data++, W512[j]);
+ /* Apply the SHA-512 compression function to update a..h */
+ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
#else /* BYTE_ORDER == LITTLE_ENDIAN */
- /* Apply the SHA-512 compression function to update a..h with copy */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
+ /* Apply the SHA-512 compression function to update a..h with copy */
+ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
- T2 = Sigma0_512(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 16);
-
- do {
- /* Part of the message block expansion: */
- s0 = W512[(j+1)&0x0f];
- s0 = sigma0_512(s0);
- s1 = W512[(j+14)&0x0f];
- s1 = sigma1_512(s1);
-
- /* Apply the SHA-512 compression function to update a..h */
- T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
- (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
- T2 = Sigma0_512(a) + Maj(a, b, c);
- h = g;
- g = f;
- f = e;
- e = d + T1;
- d = c;
- c = b;
- b = a;
- a = T1 + T2;
-
- j++;
- } while (j < 80);
-
- /* Compute the current intermediate hash value */
- context->state[0] += a;
- context->state[1] += b;
- context->state[2] += c;
- context->state[3] += d;
- context->state[4] += e;
- context->state[5] += f;
- context->state[6] += g;
- context->state[7] += h;
-
- /* Clean up */
- a = b = c = d = e = f = g = h = T1 = T2 = 0;
+ T2 = Sigma0_512(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 16);
+
+ do {
+ /* Part of the message block expansion: */
+ s0 = W512[(j+1)&0x0f];
+ s0 = sigma0_512(s0);
+ s1 = W512[(j+14)&0x0f];
+ s1 = sigma1_512(s1);
+
+ /* Apply the SHA-512 compression function to update a..h */
+ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
+ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
+ T2 = Sigma0_512(a) + Maj(a, b, c);
+ h = g;
+ g = f;
+ f = e;
+ e = d + T1;
+ d = c;
+ c = b;
+ b = a;
+ a = T1 + T2;
+
+ j++;
+ } while (j < 80);
+
+ /* Compute the current intermediate hash value */
+ context->state[0] += a;
+ context->state[1] += b;
+ context->state[2] += c;
+ context->state[3] += d;
+ context->state[4] += e;
+ context->state[5] += f;
+ context->state[6] += g;
+ context->state[7] += h;
+
+ /* Clean up */
+ a = b = c = d = e = f = g = h = T1 = T2 = 0;
}
#endif /* SHA2_UNROLL_TRANSFORM */
void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
- unsigned int freespace, usedspace;
-
- if (len == 0) {
- /* Calling with no data is valid - we do nothing */
- return;
- }
-
- /* Sanity check: */
- assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
-
- usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
- if (usedspace > 0) {
- /* Calculate how much free space is available in the buffer */
- freespace = SHA512_BLOCK_LENGTH - usedspace;
-
- if (len >= freespace) {
- /* Fill the buffer completely and process it */
- MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
- ADDINC128(context->bitcount, freespace << 3);
- len -= freespace;
- data += freespace;
- SHA512_Transform(context, (sha2_word64*)context->buffer);
- } else {
- /* The buffer is not yet full */
- MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
- ADDINC128(context->bitcount, len << 3);
- /* Clean up: */
- usedspace = freespace = 0;
- return;
- }
- }
- while (len >= SHA512_BLOCK_LENGTH) {
- /* Process as many complete blocks as we can */
- MEMCPY_BCOPY(context->buffer, data, SHA512_BLOCK_LENGTH);
- SHA512_Transform(context, (sha2_word64*)context->buffer);
- ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
- len -= SHA512_BLOCK_LENGTH;
- data += SHA512_BLOCK_LENGTH;
- }
- if (len > 0) {
- /* There's left-overs, so save 'em */
- MEMCPY_BCOPY(context->buffer, data, len);
- ADDINC128(context->bitcount, len << 3);
- }
- /* Clean up: */
- usedspace = freespace = 0;
+ unsigned int freespace, usedspace;
+
+ if (len == 0) {
+ /* Calling with no data is valid - we do nothing */
+ return;
+ }
+
+ /* Sanity check: */
+ assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
+
+ usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
+ if (usedspace > 0) {
+ /* Calculate how much free space is available in the buffer */
+ freespace = SHA512_BLOCK_LENGTH - usedspace;
+
+ if (len >= freespace) {
+ /* Fill the buffer completely and process it */
+ MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
+ ADDINC128(context->bitcount, freespace << 3);
+ len -= freespace;
+ data += freespace;
+ SHA512_Transform(context, (sha2_word64*)context->buffer);
+ } else {
+ /* The buffer is not yet full */
+ MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
+ ADDINC128(context->bitcount, len << 3);
+ /* Clean up: */
+ usedspace = freespace = 0;
+ return;
+ }
+ }
+ while (len >= SHA512_BLOCK_LENGTH) {
+ /* Process as many complete blocks as we can */
+ MEMCPY_BCOPY(context->buffer, data, SHA512_BLOCK_LENGTH);
+ SHA512_Transform(context, (sha2_word64*)context->buffer);
+ ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
+ len -= SHA512_BLOCK_LENGTH;
+ data += SHA512_BLOCK_LENGTH;
+ }
+ if (len > 0) {
+ /* There's left-overs, so save 'em */
+ MEMCPY_BCOPY(context->buffer, data, len);
+ ADDINC128(context->bitcount, len << 3);
+ }
+ /* Clean up: */
+ usedspace = freespace = 0;
}
void SHA512_Last(SHA512_CTX* context) {
- unsigned int usedspace;
+ unsigned int usedspace;
- usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
+ usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH);
#if BYTE_ORDER == LITTLE_ENDIAN
- /* Convert FROM host byte order */
- REVERSE64(context->bitcount[0],context->bitcount[0]);
- REVERSE64(context->bitcount[1],context->bitcount[1]);
+ /* Convert FROM host byte order */
+ REVERSE64(context->bitcount[0],context->bitcount[0]);
+ REVERSE64(context->bitcount[1],context->bitcount[1]);
#endif
- if (usedspace > 0) {
- /* Begin padding with a 1 bit: */
- context->buffer[usedspace++] = 0x80;
-
- if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
- /* Set-up for the last transform: */
- MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
- } else {
- if (usedspace < SHA512_BLOCK_LENGTH) {
- MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
- }
- /* Do second-to-last transform: */
- SHA512_Transform(context, (sha2_word64*)context->buffer);
-
- /* And set-up for the last transform: */
- MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
- }
- } else {
- /* Prepare for final transform: */
- MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
-
- /* Begin padding with a 1 bit: */
- *context->buffer = 0x80;
- }
- /* Store the length of input data (in bits): */
- MEMCPY_BCOPY(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], &context->bitcount[1],
- sizeof(sha2_word64));
- MEMCPY_BCOPY(&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8], &context->bitcount[0],
- sizeof(sha2_word64));
-
- /* Final transform: */
- SHA512_Transform(context, (sha2_word64*)context->buffer);
+ if (usedspace > 0) {
+ /* Begin padding with a 1 bit: */
+ context->buffer[usedspace++] = 0x80;
+
+ if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
+ /* Set-up for the last transform: */
+ MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
+ } else {
+ if (usedspace < SHA512_BLOCK_LENGTH) {
+ MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
+ }
+ /* Do second-to-last transform: */
+ SHA512_Transform(context, (sha2_word64*)context->buffer);
+
+ /* And set-up for the last transform: */
+ MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
+ }
+ } else {
+ /* Prepare for final transform: */
+ MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
+
+ /* Begin padding with a 1 bit: */
+ *context->buffer = 0x80;
+ }
+ /* Store the length of input data (in bits): */
+ MEMCPY_BCOPY(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], &context->bitcount[1],
+ sizeof(sha2_word64));
+ MEMCPY_BCOPY(&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8], &context->bitcount[0],
+ sizeof(sha2_word64));
+
+ /* Final transform: */
+ SHA512_Transform(context, (sha2_word64*)context->buffer);
}
int SHA512_Final(sha2_byte digest[SHA512_DIGEST_LENGTH], SHA512_CTX* context) {
- sha2_word64 *d = (sha2_word64*)digest;
+ sha2_word64 *d = (sha2_word64*)digest;
- /* Sanity check: */
- assert(context != (SHA512_CTX*)0);
+ /* Sanity check: */
+ assert(context != (SHA512_CTX*)0);
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != (sha2_byte*)0) {
- SHA512_Last(context);
+ /* If no digest buffer is passed, we don't bother doing this: */
+ if (digest != (sha2_byte*)0) {
+ SHA512_Last(context);
- /* Save the hash data for output: */
+ /* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
- {
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 8; j++) {
- REVERSE64(context->state[j],context->state[j]);
- *d++ = context->state[j];
- }
- }
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < 8; j++) {
+ REVERSE64(context->state[j],context->state[j]);
+ *d++ = context->state[j];
+ }
+ }
#else
- MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
+ MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
#endif
- }
+ }
- /* Zero out state data */
- MEMSET_BZERO(context, sizeof(*context));
- return 1;
+ /* Zero out state data */
+ MEMSET_BZERO(context, sizeof(*context));
+ return 1;
}
char *SHA512_End(SHA512_CTX* context, char buffer[SHA512_DIGEST_STRING_LENGTH]) {
- sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
- int i;
-
- /* Sanity check: */
- assert(context != (SHA512_CTX*)0);
-
- if (buffer != (char*)0) {
- SHA512_Final(digest, context);
- for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
- *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
- *buffer++ = sha2_hex_digits[*d & 0x0f];
- d++;
- }
- *buffer = (char)0;
- } else {
- MEMSET_BZERO(context, sizeof(*context));
- }
- MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
- return buffer;
+ sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
+ int i;
+
+ /* Sanity check: */
+ assert(context != (SHA512_CTX*)0);
+
+ if (buffer != (char*)0) {
+ SHA512_Final(digest, context);
+ for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
+ *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha2_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(*context));
+ }
+ MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
+ return buffer;
}
char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
- SHA512_CTX context;
+ SHA512_CTX context;
- SHA512_Init(&context);
- SHA512_Update(&context, data, len);
- return SHA512_End(&context, digest);
+ SHA512_Init(&context);
+ SHA512_Update(&context, data, len);
+ return SHA512_End(&context, digest);
}
/*** SHA-384: *********************************************************/
int SHA384_Init(SHA384_CTX* context) {
- if (context == (SHA384_CTX*)0) {
- return 0;
- }
- MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
- MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
- context->bitcount[0] = context->bitcount[1] = 0;
- return 1;
+ if (context == (SHA384_CTX*)0) {
+ return 0;
+ }
+ MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
+ MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
+ context->bitcount[0] = context->bitcount[1] = 0;
+ return 1;
}
void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
- SHA512_Update((SHA512_CTX*)context, data, len);
+ SHA512_Update((SHA512_CTX*)context, data, len);
}
int SHA384_Final(sha2_byte digest[SHA384_DIGEST_LENGTH], SHA384_CTX* context) {
- sha2_word64 *d = (sha2_word64*)digest;
+ sha2_word64 *d = (sha2_word64*)digest;
- /* Sanity check: */
- assert(context != (SHA384_CTX*)0);
+ /* Sanity check: */
+ assert(context != (SHA384_CTX*)0);
- /* If no digest buffer is passed, we don't bother doing this: */
- if (digest != (sha2_byte*)0) {
- SHA512_Last((SHA512_CTX*)context);
+ /* If no digest buffer is passed, we don't bother doing this: */
+ if (digest != (sha2_byte*)0) {
+ SHA512_Last((SHA512_CTX*)context);
- /* Save the hash data for output: */
+ /* Save the hash data for output: */
#if BYTE_ORDER == LITTLE_ENDIAN
- {
- /* Convert TO host byte order */
- int j;
- for (j = 0; j < 6; j++) {
- REVERSE64(context->state[j],context->state[j]);
- *d++ = context->state[j];
- }
- }
+ {
+ /* Convert TO host byte order */
+ int j;
+ for (j = 0; j < 6; j++) {
+ REVERSE64(context->state[j],context->state[j]);
+ *d++ = context->state[j];
+ }
+ }
#else
- MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
+ MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
#endif
- }
+ }
- /* Zero out state data */
- MEMSET_BZERO(context, sizeof(*context));
- return 1;
+ /* Zero out state data */
+ MEMSET_BZERO(context, sizeof(*context));
+ return 1;
}
char *SHA384_End(SHA384_CTX* context, char buffer[SHA384_DIGEST_STRING_LENGTH]) {
- sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
- int i;
-
- /* Sanity check: */
- assert(context != (SHA384_CTX*)0);
-
- if (buffer != (char*)0) {
- SHA384_Final(digest, context);
- for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
- *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
- *buffer++ = sha2_hex_digits[*d & 0x0f];
- d++;
- }
- *buffer = (char)0;
- } else {
- MEMSET_BZERO(context, sizeof(*context));
- }
- MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
- return buffer;
+ sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
+ int i;
+
+ /* Sanity check: */
+ assert(context != (SHA384_CTX*)0);
+
+ if (buffer != (char*)0) {
+ SHA384_Final(digest, context);
+ for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
+ *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
+ *buffer++ = sha2_hex_digits[*d & 0x0f];
+ d++;
+ }
+ *buffer = (char)0;
+ } else {
+ MEMSET_BZERO(context, sizeof(*context));
+ }
+ MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
+ return buffer;
}
char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
- SHA384_CTX context;
+ SHA384_CTX context;
- SHA384_Init(&context);
- SHA384_Update(&context, data, len);
- return SHA384_End(&context, digest);
+ SHA384_Init(&context);
+ SHA384_Update(&context, data, len);
+ return SHA384_End(&context, digest);
}